
FluidTokens Peer-to-Peer Loans v3
Audit Report v1
December 21, 2023

Contents
Revision table 1

1 Executive summary 2
Project overview . 2
Audit overview . 3
Summary of findings . 4

2 Severity overview 5
FTA2-001 The same bond NFT can be minted multiple times . . 7
FTA2-002 Borrower can claim his collateral prematurely 9
FTA2-003 Borrower can steal the whole content of a collection

offer pool . 10
FTA2-101 Lender and borrower bonds use the same policy . . . 11
FTA2-102 Repayments are locked when active loan is claimed . 12
FTA2-201 Double satisfaction in the loan amount payment . . . 13
FTA2-301 Script hashes in the code are placeholders 14
FTA2-302 Duplications of type declarations 15
FTA2-303 Min Ada is not handled by the smart contract 16
FTA2-304 Undefined repayments’ staking credential 17
FTA2-401 Aiken warnings . 18
FTA2-402 Helper functions are declared multiple times 19
FTA2-403 Graveyard design improvement 20
FTA2-404 Incorrect documentation of the loan request’s redeemer 21
FTA2-405 Undocumented assumptions and unchecked fields . 22
FTA2-406 Naming and shadowing 23

Appendix 24

A Disclaimer 24

B Audited files 26

C Methodology 27

D Issue classification 29

E Report revisions 31

F About us 32

Revision table
Report version Report name Date Report URL

1.0 Main audit 2023-12-21 Full report link

1

https://github.com/vacuumlabs/audits/blob/master/reports/fluidtokens-p2p-loans-v3-v1.0.pdf

1 Executive summary
THIS REPORT DOES NOT PROVIDE ANY WARRANTY OF QUALITY OR SECURITY OF THE AUDITED CODE
and should be understood as a best efforts opinion of Vacuumlabs produced upon re-
viewing the materials provided to Vacuumlabs. Vacuumlabs can only comment on the
issues it discovers and Vacuumlabs does not guarantee discovering all the relevant is-
sues. Vacuumlabs also disclaims all warranties or guarantees in relation to the report to
the maximum extent permitted by the applicable law. This report is also subject to the full
disclaimer in the appendix of this document, which you should read before reading the
report.

Project overview
The project offers a peer-to-peer decentralized lending with an NFT-based collateral.
The protocol can be initiated by either a person interested in borrowing (a borrower) or
by a person interested in lending (a lender). A borrower can create a loan request that
contains all the loan information, including an amount and an asset to be lent, an interest
amount, a duration of the loan, and a number of installments in which the loan will be
paid back. They back this request with the collateral that is locked in the contract. The
collateral is a single NFT in this case. The borrower can cancel the loan request before
it is accepted.

Anyone can accept this loan request (a lender) by sending an appropriate amount of
the specified loan asset to the borrower. The borrower is then obliged to pay back the
loan amount with the interest according to the agreed-upon terms. The total loan and
interest amounts are split evenly among the whole loan duration and need to be repaid
regularly – the first installment is due in the first portion of the total loan duration, etc.

Similar to a loan request, a person interested in lending and collecting interest on it (a
lender) can also create a request. A collection offer request contains the resulting loan
information, including an interest rate, accepted collateral options, a maximum size of a
loan provided per a selected collateral option, a duration of the loan, and a number of
installments in which the loan will be paid back. The whole amount to be lent is locked in
the collection offer request.

Anyone can accept this collection offer request by taking a loan directly from the col-
lection offer request provided they lock a sufficiently valuable collateral based on the pa-
rameters set out by the lender in the collection offer request. The collateral in this case
can contain multiple different NFTs from a single collection. The borrower does not

2

have to take the full loan amount. The remainder needs to be left untouched in the same
collection offer request. Multiple loans can therefore be taken from the same collection
offer. The lender can cancel the collection offer request before it is accepted.

If any single loan repayment is not paid on time, the lender can claim the collat-
eral – the underlying NFTs. There are no other liquidation options, e.g. there’s no liquida-
tion option because of a drop in the value of the collateral backing the loan.

The access to a loan is managed by bond tokens – one is minted for a borrower
and one is minted for a lender, both when a request (a loan request or a collection offer
request) is accepted. The borrower’s bond token can be used to pay an installment. The
lender’s bond token can be used to claim a repayment or to claim the collateral in case a
repayment is not repaid on time.

As only these tokens control access to the mentioned functionalities, they can be sold
or moved to other addresses. The responsibilities, rights, as well as entitlements of the
respective party are transferred alongside the bond token ownership.

Audit overview
We started the audit at commit f4dcdd8d9c813272d254dd4d1a3576faa326c0ae and
it lasted from 13 November 2023 to 21 December 2023. The timeframe is inclusive of pe-
riods in which we were awaiting the implementation of fixes by the client. We interacted
mostly on Discord and gave feedback in GitHub pull requests. The team fixed all issues to
our satisfaction, except for 2 minor and 1 informational findings that were acknowledged.
They do not represent security threats to the system and can be mitigated by proper ex-
pectation management and communication.

The scope of the audit was limited to the smart contract files only. We did not review
nor see any tests as part of this audit, and no tests were included in the repository. As
a suggestion for further enhancing the codebase, we recommend integrating tests into
the repository and incorporating them into the regular development workflow. We believe
that such a step would proactively identify and resolve some issues we found as part of
this audit.

We performed a design review along with a deep manual audit of the code and re-
ported findings along with remediation suggestions to the team in a continuous fashion,
allowing the time for a proper remediation that we reviewed afterwards. See more about
our methodology in Methodology.

The commit d2157cc1e759259d25d41961a28cc042daabb2cd represents the final
version of the code. The status of any issue in this report reflects its status at that commit.

3

You can see all the files audited and their hashes in Audited files. The smart contract
language used is Aiken and the contracts are intended to run on Cardano. To avoid any
doubt, we did not audit Aiken itself.

Summary of findings
During the audit, we found and reported: 3 critical, 2 major, 1 medium, 4 minor, and
6 informational findings. All findings were fully resolved except for these 3 that were
acknowledged:

1. FTA2-303: Min Ada is not handled by the smart contract. As mentioned in the is-
sue, the min Ada has no special handling in the smart contracts. The most notable
downside is that loans with many installments require a min Ada downpayment in
every repayment, possibly even on top of the loan amount. Clear communication is
crucial here.

2. FTA2-304: Undefined repayments’ staking credential. Since the bond ownership
can change, it is not easy to make the repaid but unclaimed payments accrue Ada
staking rewards on the bond holder’s account. It is left unenforced in the smart con-
tract. As a result, a repayer can possibly set it to any stake credential. Transactions
coming from the official website will have the staking credentials set to the protocol’s
stake key.

3. FTA2-405: Undocumented assumptions and unchecked fields. This is an informa-
tional finding notifying the client not to rely on certain fields in the datums for the
purposes of their web application as they can be set maliciously. More scrupulous
documentation is encouraged.

The critical issues were of two kinds. The first finding arose from a code edge case –
a possible overflow in the hash computation of the bond token name, allowing for mul-
tiple bonds with the same name. The other two findings were caused by an overlooked
different parsing mechanism of certain inputs and outputs resulting in a lack of address
validation.

The major finding FTA2-101 highlights the importance of resolving compiler warnings
and maintaining a thorough test coverage. It involved two minting policies that were es-
sentially identical, except for a field responsible for differentiating them that was not ac-
tively used in the code. The field was flagged in the Aiken warnings. It resulted in the
policies being compiled into the same bytecode. Consequently, this affected certain es-
sential functionalities in the rest of the code that assumed distinct policies.

The rest of the issues consisted of minor edge cases that the contracts did not handle
and of code style suggestions to make the code more readable and less prone to errors.

4

2 Severity overview

Critical Major Medium Minor Informational

3

2

1

4

6

Findings

FTA2-001
The same bond NFT can be minted multiple
times

CRITICAL RESOLVED

FTA2-002
Borrower can claim his collateral
prematurely

CRITICAL RESOLVED

FTA2-003
Borrower can steal the whole content of a
collection offer pool

CRITICAL RESOLVED

FTA2-101
Lender and borrower bonds use the same
policy

MAJOR RESOLVED

FTA2-102
Repayments are locked when active loan is
claimed

MAJOR RESOLVED

ID TITLE SEVERITY STATUS

Continued on next page

5

FTA2-201
Double satisfaction in the loan amount
payment

MEDIUM RESOLVED

FTA2-301 Script hashes in the code are placeholders MINOR RESOLVED

FTA2-302 Duplications of type declarations MINOR RESOLVED

FTA2-303 Min Ada is not handled by the smart contract MINOR ACKNOWLEDGED

FTA2-304 Undefined repayments’ staking credential MINOR ACKNOWLEDGED

FTA2-401 Aiken warnings INFORMATIONAL RESOLVED

FTA2-402 Helper functions are declared multiple times INFORMATIONAL RESOLVED

FTA2-403 Graveyard design improvement INFORMATIONAL RESOLVED

FTA2-404
Incorrect documentation of the loan
request’s redeemer

INFORMATIONAL RESOLVED

FTA2-405
Undocumented assumptions and
unchecked fields

INFORMATIONAL ACKNOWLEDGED

FTA2-406 Naming and shadowing INFORMATIONAL RESOLVED

ID TITLE SEVERITY STATUS

6

FTA2-001 The same bond NFT can be minted
multiple times

Category Vulnerable commit Severity Status

Code Issue f4dcdd8d9c CRITICAL RESOLVED

Description

It is possible to mint multiples of the same borrower or lender bond NFTs split across
different transactions. The reason is an overflow of the UTxO’s index in the token name
formula:

1 let tokenName = sha2_256(bytearray.push(utxo, index))

As the bytearray.push’s documentation mentions, when the given byte is greater
than 255, it wraps around:

1 bytearray.push(#"0203", 1)

2 == bytearray.push(#"0203", 257)

3 == #"010203"

A sample attack can look like this:

1. A lender makes a huge transaction with multiple smaller outputs, say more than 257.
The outputs now have the same transaction identifier and different indices.

2. The lender lends to a borrower and mints his lender NFT in the process. As a refer-
ence, he uses an UTxO he prepared – the one with the index equal to 1.

3. The lender sells his bond to somebody else for a decent price – after all, the buyer
of the bond will be repaid the loan plus the interest.

4. The lender can now mint another lender NFT which is identical to the one he just
sold. He can do so by referencing another UTxO he prepared – the one with the
index equal to 257. Due to the overflow in the token name computation, the token
name is not unique.

5. Owning the lender NFT, both the buyer of the bond and the attacker can now with-
draw repayments. The attacker will likely watch it more closely and be the first one
to withdraw.

7

https://aiken-lang.github.io/stdlib/aiken/bytearray.html#push

Recommendation

We recommend checking that the index is between 0 and 255.

Resolution

The issue is resolved in the pull request number 1.

8

FTA2-002 Borrower can claim his collateral
prematurely

Category Vulnerable commit Severity Status

Logical Issue f4dcdd8d9c CRITICAL RESOLVED

Description

There is no check for an ongoing active loan’s address. As a result, a borrower can set
the address of the ongoing active loan’s UTxO when repaying the first installment to any
dummy smart contract address controlled by him. Afterwards, he can freely claim his
locked collateral. He is not obliged to repay the rest of the loan or the interest amount.

Recommendation

Make sure to add a check for the activeLoanOutput’s address to be equal to the own-

ScriptHash. You can add the check e.g. into the validate_output_to_active_loan

function.

Resolution

The issue is resolved in the pull request number 1.

9

FTA2-003 Borrower can steal the whole con-
tent of a collection offer pool

Category Vulnerable commit Severity Status

Logical Issue f4dcdd8d9c CRITICAL RESOLVED

Description

Similar to the issue FTA2-002 with the active loan’s address, there is no check for an on-
going collection offer pool’s address. The collection offer pool verifies only the staking
credential of its ongoing output, but not the payment credential.

An attacker can take an incomplete loan from the collection offer and then change the
payment credential of the ongoing collection offer to his own script address. The result is
a complete loss of the whole collection offer pool.

Recommendation

Add a check for the ongoing collection offer’s payment credential into the collection offer
validator.

Resolution

The issue was resolved in the pull request number 1.

10

FTA2-101 Lender and borrower bonds use
the same policy

Category Vulnerable commit Severity Status

Logical Issue f4dcdd8d9c MAJOR RESOLVED

Description

The policy governing the lender and the borrower bonds is located in thelender_bond.ak
and the borrower_bond.ak, respectively. The only difference between the files is the
value of a variable called bondType. However, this variable is not used. That results in
exactly the same policy hashes as can be verified in the plutus.json file that contains
all the compiled hashes.

The other parts of the code assume that the policies are different, though. Since the
policy does not allow for multiple asset names to be equal, looking at the loan request’s
tokens_sent_to_lender_and_borrower function, it becomes clear that it’s impossible
to lend to any loan request. It is impossible to mint two such tokens and it’s required by
the validator at the same time.

Recommendation

We recommend using the bondType variable as a parameter of the minting policies. Ad-
ditionally, you could reuse the same code in the files and remove one file – since they are
different only in the bondType variable.

Resolution

The policies are parametrized in the pull request number 1.

11

FTA2-102 Repayments are locked when ac-
tive loan is claimed

Category Vulnerable commit Severity Status

Design Issue f4dcdd8d9c MAJOR RESOLVED

Description

When claiming an active loan, the validator checks that the lender’s NFT is burned. There-
fore, the NFT can not be used to withdraw any associated leftover repayment UTxOs any-
more.

If the borrower repays some repayments, but then stops, the lender can liquidate the
loan and claim his collateral. If, however, the lender first claims the collateral, he is not
able to withdraw the already repaid repayments as he no longer owns the lender NFT.

Recommendation

We recommend not burning the lender’s NFT.

Resolution

The issue was resolved in the pull request number 1.

12

FTA2-201 Double satisfaction in the loan amount
payment

Category Vulnerable commit Severity Status

Design Issue 04ccbfee4c MEDIUM RESOLVED

Description

In the current loan request scenario, the loan amount is paid directly to the borrower.
There are safeguards against a double-satisfaction assuming multiples of the same scripts.
However, it could potentially clash with another protocol that expects a certain payment
to the same borrower. A malicious lender could exploit this by batching another protocol’s
operation (e.g. an NFT marketplace listing of the same borrower) with the loan request in
the same transaction, leading to a double satisfaction issue – satisfying both the listing
and the loan request.

Recommendation

One way to resolve this is to forbid those other scripts. If that is not the wanted course
of action, we recommend not sending the loan amount directly to the borrower. Instead,
consider sending it to a dedicated smart contract from where the borrower can claim it.
This approach would be similar to a “claim” smart contract, akin to your existing “grave-
yard” smart contract. It would prevent potential cross-protocol double satisfaction issues
on the loan amount. It is crucial that this dedicated smart contract is used exclusively for
this protocol to avoid potential clashes. We even recommend adding a metadata param-
eter into the contract to avoid even random clashes – for example the name, the version
and the purpose of the contract.

Resolution

The issue was resolved in the pull request number 2 by forbidding other script inputs in the
relevant transactions. There could still be very rare situations in which double satisfaction
is possible among this script and a minting policy or a reward script from another protocol.
We explain such situations in our blogpost. However, it is okay to rely on that policy /
reward script implementing double satisfaction prevention as well – checking that there
is no script input. As a result, we consider this fix sufficient and this edge case improbable
in practice.

13

https://medium.com/@vacuumlabs_auditing/cardano-vulnerabilities-2-double-satisfaction-continued-a66043d025c0

FTA2-301 Script hashes in the code are place-
holders

Category Vulnerable commit Severity Status

Code Issue f4dcdd8d9c MINOR RESOLVED

Description

The script hashes across the codebase such as the lendersNftCs, borrowerNftCs, re-
paymentSCHash, and many more are just placeholders with a constant value of35b2...955e.
The value does not correspond to any value from the plutus.json file.

We assume that the values are just placeholders that are intended to be changed to
the final hashes coming post-audit, hence the severity. However, to both keep track of
this and since it is not deployable and testable in this state, we report it. The severity of
the issue would be major if it was forgotten.

Recommendation

We recommend maintaining up-to-date hash references and testing all versions of the
code. We also encourage an easier, more automatic way of updating them. You could do
it in a build script, assuming you take the hashes as parameters.

Resolution

The issue was resolved in the pull request number 3 by taking the hashes as parameters
of the validators.

14

FTA2-302 Duplications of type declarations

Category Vulnerable commit Severity Status

Code Style f4dcdd8d9c MINOR RESOLVED

Description

Many of the types declared in the smart contract files are declared multiple times. Ex-
amples of these are: Asset, CollectionAmount, as well as all the datums of various
validators. The datums are the worst offenders here, as they are declared under different
names – for example, the Datum from the repayment.ak file is equivalent to the Repay-

mentDatum from the active_loan.ak. In the active_loan.ak, the Datum is equivalent
to the ActiveDatum in the other files.

The big issue with this is that any change in any datum has to be propagated into all
the other places in the codebase, where this datum is used. The compiler will not catch a
problem if there is one. As there are no tests right now, neither those will catch it, resulting
in locked funds as the validator won’t be able to properly parse its datum.

Recommendation

To increase the readability and the security of the code and to adhere to no code duplica-
tion best practices, we recommend separating all the type declarations that are reused
into a new types.ak file which can be imported where needed.

Resolution

The issue was resolved in the pull request number 1.

15

FTA2-303 Min Ada is not handled by the smart
contract

Category Vulnerable commit Severity Status

Design Issue 04ccbfee4c MINOR ACKNOWLEDGED

Description

Every UTxO has to have a minimal amount of Ada (min Ada) inside it. For script UTxOs, this
is usually around 1 − 2 Ada. The lending smart contracts do not handle min Ada specifi-
cally. This has the biggest effect on repayments – in the worst case scenario, the borrower
creates a repayment UTxO for each installment and has to therefore pay the lender an ad-
ditional totalInstallments × minAda Ada. The more installments a loan has, the more the
borrower has to pay to the lender.

There are also other less severe instances of this finding – for example, when borrowing
from a collection offer, the borrower has to supply the min Ada for the active loan, but the
last borrower does not have to do this as he consumes the collection offer output.

Recommendation

One of the cleaner solutions to cater the repayments could be to track the address of the
repayer in the datum of a repayment and resend the min Ada back to him, ideally indirectly
using a claim script to avoid the double satisfaction vulnerability. The other discrepancies
are comparably smaller in impact. It is possible to explore those as well upon request.

Alternatively, you can clearly explain the users the side effects of loans with many in-
stallments and that it is expected that they will have to pay back that amount of Ada on
top.

Resolution

The issue was acknowledged by the client.

16

FTA2-304 Undefined repayments’ staking cre-
dential

Category Vulnerable commit Severity Status

Design Issue 04ccbfee4c MINOR ACKNOWLEDGED

Description

The staking credential of Ada contained within the repayments is not currently checked
in the smart contracts. This allows the borrower to set it as they wish. According to the
client, it should be set to the lender’s staking credential.

Recommendation

Given the transferability of the lender bond, it may not be easily possible to determine
who currently holds the lender bond. We recommend setting the staking credential ei-
ther to the original lender’s staking credential, the protocol’s credential or not to change
the smart contract logic – leave it up to the borrower (or the front-end constructing the
transaction). That would mean acknowledging that advanced borrowers could set it to
their credentials, though.

Resolution

The issue was acknowledged by the client. They will prefill the protocol’s staking creden-
tial to repayments from their off-chain.

17

FTA2-401 Aiken warnings

Category Vulnerable commit Severity Status

Code Style f4dcdd8d9c INFORMATIONAL RESOLVED

Description

Running aiken check outputs 122 warnings. They are all related to the code style –
mostly listing unused imports, unused types, unused constructors and four instances of
single when statements that can be rewritten in a nicer way.

Recommendation

We recommend fixing all of the warnings. Given the nature of the warnings, it will result in
a removal of a lot of code. That improves the overall readability. You can either run aiken

check directly and go case by case or you can use Aiken’s VSCode extension to highlight
those occurrences that need fixing directly in the code.

Resolution

The issue was resolved in the pull request number 3.

18

FTA2-402 Helper functions are declared mul-
tiple times

Category Vulnerable commit Severity Status

Code Style f4dcdd8d9c INFORMATIONAL RESOLVED

Description

Many helper functions are declared over and over across multiple files – for example func-
tions such as: is_nft_spent, validity_range_within_an_hour, get_outputs_to_-
sc, get_inputs_from_sc, must_be_signed_by or get_own_hash. Sometimes, those
functions are not even used – for example: must_be_signed_by or validity_range_-
within_an_hour in the active_loan.ak file.

This makes the code bloated and difficult to read. It also makes bugs very easy to
introduce and hard to notice when changing the code.

Recommendation

We recommend creating a single file that contains all the helper functions and importing
them into the validators.

Resolution

The issue was resolved in the pull request number 1.

19

FTA2-403 Graveyard design improvement

Category Vulnerable commit Severity Status

Design Issue f4dcdd8d9c INFORMATIONAL RESOLVED

Description

Currently, the smart contracts check that the lender bond tokens are moved to the grave-
yard after the last repayment is withdrawn. The graveyard is a fail-safe mechanism with
two main functionalities:

1. It holds unusable bond tokens (cleanup).

2. The owner can withdraw the bond token from it (fail-safe mechanism).

The repayment smart contract requires the user to send the token to the graveyard
when he withdraws the final repayment. This means that sometimes the user might have
to send the token to the graveyard and then take it back – e.g. when he withdraws the
final repayment before the other repayments – he may not be able to claim all of the
repayments in a single transaction and this assumes withdrawing in an arbitrary order.

A simpler design could make sending the token to the graveyard optional and up to
the front-end. The front-end can decide whether to send the tokens to the graveyard or
back to the user depending on whether he claimed all of the repayments already or not.
It does not need to be validated by the smart contract. The presence of the bond token
needs to be validated, though.

Recommendation

You do not need to check whether the tokens are burned or sent to the graveyard. Instead,
we recommend deciding this on the frontend. Either the user can decide to send the
unused tokens to the graveyard or the frontend can automatically detect that the user has
no more repayments to claim.

Resolution

The issue was partially resolved in the pull request number 1 and fully resolved in the pull
request number 4.

20

FTA2-404 Incorrect documentation of the loan
request’s redeemer

Category Vulnerable commit Severity Status

Documentation 04ccbfee4c INFORMATIONAL RESOLVED

Description

The documentation for the Lend redeemer in the loan request contains a typo. The field
lenderAddress is described as the field where the borrower wants his bond NFT. This is
incorrect as it is the lender’s address and it is the lender who wants his bond to be sent
there.

Recommendation

We recommend correcting the documentation to accurately reflect that the lenderAd-

dress field is the address where the lender wants his bond NFT to be sent.

Resolution

The issue was resolved in the pull request number 2.

21

FTA2-405 Undocumented assumptions and
unchecked fields

Category Vulnerable commit Severity Status

Documentation 04ccbfee4c INFORMATIONAL ACKNOWLEDGED

Description

There are several assumptions in the datums that are not documented. For instance, the
repayment datum’sinstallmentsContained, installmentsPaidSoFar andisFinal-

Repayment fields are not necessarily validated by the smart contract. They are validated
for UTxOs created in the expected flow, by interacting with the active loan. However, an at-
tacker could create a repayment UTxO directly and put any values into the datums. Same
applies to the containedAmount field in the collection offer’s datum.

Additionally, the graveyard’s owner needs to be a public key hash owner, not a smart
contract. The same applies to the generic lender/borrower functionality, where the user
must be able to sign transactions to claim repayments or cancel loan requests. If a smart
contract address is used instead, it could result in locked funds.

Finally, if the collateral contains Ada, the Ada is unchecked by the smart contract and
can be hence stolen from the loan request.

Recommendation

We recommend documenting these assumptions and ensuring that the front-end is ro-
bust against these issues and validates that the fields correspond with reality. Also, front-
end checks should be implemented to prevent smart contract addresses from being used
in these fields as well as not allowing the placement of Ada collateral.

Resolution

The issue was acknowledged by the client. They will address it off-chain.

22

FTA2-406 Naming and shadowing

Category Vulnerable commit Severity Status

Code Style 04ccbfee4c INFORMATIONAL RESOLVED

Description

Naming improvement suggestions include:

1. Collection offer datum’s maxLoanAmnt and wantedCollections do not explain
what they represent. The maxLoanAmnt is not the maximum loan amount but rather
the maximum at which a single collection multiple is enough as a collateral. As
for the wantedCollections, a more suitable name could be collateralOptions.
ThemaxLoanAmnt could then be renamed to something likemaxLoanPerSingleCol-
lateralOption.

2. There are a few places where variables are simply named a. This is acceptable as
long as it is contained within a very simple function with a very simple logic and
ideally a single usage of the variable. However, as we are talking about a smart
contract logic which is critical, it would help to have more descriptive names. In
the input_is_included function, the variable a is also assigned value twice and
so it shadows the function-level variable a. We recommend renaming all variables
named a.

3. A statement like Some(someInput) extracts the value of the option variable into the
someInput variable. However, it asserts that the Option is of Some type and that
it has a value that is then assigned to the someInput variable. It is therefore not a
someInput anymore, but rather an input.

4. In the input_is_included function, the variable named waited could be renamed
to e.g. wanted to better reflect its purpose.

Recommendation

The recommendation is part of the bullet points.

Resolution

The bullet points were mostly addressed in the pull request number 2 with the final fix in
the pull request number 4.

23

A Disclaimer
This report is subject to the terms and conditions (including without limitation, descrip-
tion of services, confidentiality, disclaimer and limitation of liability) set forth in the agree-
ment between VacuumLabs Bohemia s.r.o. (VACUUMLABS) and FT Labs GmbH (CLIENT) (the
AGREEMENT), or the scope of services, and terms and conditions provided to the Client in
connection with the Agreement, and shall be used only subject to and to the extent per-
mitted by such terms and conditions. THIS REPORT MAY NOT BE TRANSMITTED, DISCLOSED,
REFERRED TO, MODIFIED BY, OR RELIED UPON BY ANY PERSON FOR ANY PURPOSES WITHOUT VAC-
UUMLABS’S PRIOR WRITTEN CONSENT.

THIS REPORT IS NOT, NOR SHOULD BE CONSIDERED, AN ENDORSEMENT, APPROVAL OR DIS-
APPROVAL of any particular project, team, code, technology, asset or anything else. This
report is not, nor should be considered, an indication of the economics or value of any
technology, product or asset created by any team or project that contracts Vacuumlabs
to perform a smart contract assessment. THIS REPORT DOES NOT PROVIDE ANY WARRANTY
OR GUARANTEE REGARDING THE QUALITY OR NATURE OF THE TECHNOLOGY ANALYSED, nor does it
provide any indication of the technology’s proprietors, business, business model or legal
compliance.

To the fullest extent permitted by law, VACUUMLABS DISCLAIMS ALL WARRANTIES, EXPRESSED
OR IMPLIED, IN CONNECTION WITH THIS REPORT, ITS CONTENT, AND THE RELATED SERVICES AND
PRODUCTS AND YOUR USE THEREOF, including, without limitation, the implied warranties of
merchantability, fitness for a particular purpose, and non-infringement. This report is pro-
vided on an as-is, where-is, and as-available basis. Vacuumlabs does not warrant, en-
dorse, guarantee, or assume responsibility for any product or service advertised or offered
by Client or any third party through the product, any open source or third-party software,
code, libraries, materials, or information linked to, called by, referenced by or accessible
through the report, its content, and the related services, assets and products, any hyper-
linked websites, any websites or mobile applications appearing on any advertising, and
VACUUMLABS WILL NOT BE A PARTY TO OR IN ANY WAY BE RESPONSIBLE FOR MONITORING ANY
TRANSACTION BETWEEN YOU AND CLIENT AND/OR ANY THIRD-PARTY PROVIDERS OF PRODUCTS OR
SERVICES.

THIS REPORT SHOULD NOT BE USED IN ANY WAY BY ANYONE TO MAKE DECISIONS AROUND
INVESTMENT OR INVOLVEMENT WITH ANY PARTICULAR PROJECT, services or assets, especially
not to make decisions to buy or sell any assets or products. This report provides general
information and is not tailored to anyone’s specific situation, its content, access, and/or
usage thereof, including any associated services or materials, shall not be considered or

24

relied upon as any form of financial, investment, tax, legal, regulatory, or other advice.

This report is based on the scope of materials and documentation provided for a lim-
ited review at the time provided. Vacuumlabs prepared this report as an informational
exercise documenting the due diligence involved in the course of development of the
Client’s smart contract only, and THIS REPORT MAKES NO CLAIMS OR GUARANTEES CONCERN-
ING THE SMART CONTRACT’S OPERATION ON DEPLOYMENT OR POST-DEPLOYMENT. This report pro-
vides no opinion or guarantee on the security of the code, smart contracts, project, the
related assets or anything else at the time of deployment or post deployment. Smart
contracts can be invoked by anyone on the internet and as such carry substantial risk.
VACUUMLABS HAS NO DUTY TO MONITOR CLIENT’S OPERATION OF THE PROJECT AND UPDATE THE
REPORT ACCORDINGLY.

THE INFORMATION CONTAINED IN THIS REPORT MAY NOT BE COMPLETE NOR INCLUSIVE OF ALL
VULNERABILITIES. This report is not comprehensive in scope, it excludes a number of com-
ponents critical to the correct operation of this system. You agree that your access to
and/or use of, including but not limited to, any associated services, products, protocols,
platforms, content, assets, and materials will be at your sole risk. On its own, it cannot
be considered a sufficient assessment of the correctness of the code or any technology.
This report represents an extensive assessing process intending to help Client increase
the quality of their code while reducing the high level of risk presented by cryptographic
tokens and blockchain technology, however blockchain technology and cryptographic
assets present a high level of ongoing risk, including but not limited to unknown risks and
flaws.

While Vacuumlabs has conducted an analysis to the best of its ability, it is Vacuum-
labs’s recommendation to commission several independent audits, a public bug bounty
program, as well as continuous security auditing and monitoring and/or other auditing
and monitoring in line with the industry best practice. The possibility of human error in
the manual review process is highly real, and Vacuumlabs recommends seeking multiple
independent opinions on any claims which impact any functioning of the code, project,
smart contracts, systems, technology or involvement of any funds or assets. VACUUMLABS’S
POSITION IS THAT EACH COMPANY AND INDIVIDUAL ARE RESPONSIBLE FOR THEIR OWN DUE DILI-
GENCE AND CONTINUOUS SECURITY.

25

B Audited files
The files and their hashes reflect the final state at commit
d2157cc1e759259d25d41961a28cc042daabb2cd after all the fixes have been imple-
mented.

9679e...dcf22 lib/types.ak

8d811...a141c lib/utils.ak

0170a...eb534 validators/active_loan.ak

9b589...bb8e9 validators/bond.ak

fb76e...714f0 validators/bonds_graveyard.ak

38e78...7a0b9 validators/collection_offer_pool.ak

9c53f...227a0 validators/loan_request.ak

9022b...b0c44 validators/repayment.ak

SHA256 hash Filename

26

C Methodology
Vacuumlabs’ agile methodology for performing security audits consists of several key
phases:

1. Design reviews form the initial stage of our audits. The goal of the design review is
to find larger issues which result in large changes to the code fast.

2. During the deep code audit, we verify the correctness of the given code and scruti-
nize it for potential vulnerabilities. We also verify the client’s fixes for all discovered
vulnerabilities. We provide our clients with status reports on a continuous basis pro-
viding them a clear up-to-date status of all the issues found so far.

3. We conclude the audit by handing over a final audit report which contains descrip-
tions and resolutions for all the identified vulnerabilities.

Throughout our entire audit process, we report issues as soon as they are found and
verified. We communicate with the client for the duration of the whole audit. During our
audits, we check several key properties of the code:

1. Vulnerabilities in the code

2. Adherence of the code to the documented business logic

3. Potential issues in the design that are not vulnerabilities

4. Code quality

27

During our manual audits, we focus on several types of attacks, including but not lim-
ited to:

1. Double satisfaction

2. Theft of funds

3. Violation of business requirements

4. Token uniqueness attacks

5. Faking timestamps

6. Locking funds indefinitely

7. Denial of service

8. Unauthorized minting

9. Loss of staking rewards

28

D Issue classification
Severity levels
The following table explains the different severities.

Severity Impact

CRITICAL Theft of user funds, permanent freezing of funds, protocol insolvency, etc.

MAJOR
Theft of unclaimed yield, permanent freezing of unclaimed yield, temporary
freezing of funds, etc.

MEDIUM Smart contract unable to operate, partial theft of funds/yield, etc.

MINOR Contract fails to deliver promised returns, but does not lose user funds.

INFORMATIONAL Best practices, code style, readability, documentation, etc.

Resolution status
The following table explains the different resolution statuses.

Resolution status Description

RESOLVED Fix applied.

PARTIALLY
RESOLVED

Fix applied partially.

ACKNOWLEDGED Acknowledged by the project to be fixed later or out of scope.

PENDING Still waiting for a fix or an official response.

29

Categories of issues
The following table explains the different categories of issues.

Category Description

Design Issue
High-level issues in the design. Often large in scope, requiring changes to the
design or massive code changes to fix.

Logical Issue
Medium-sized issues, often in between the design and the implementation. The
changes required in the design should be small-scaled (e.g. clarifying details),
but they can affect the code significantly.

Code Issue
Small in size, fixable solely through the implementation. This category covers all
sorts of bugs, deviations from specification, etc.

Code Style
Parts of the code that work properly but are possible sources of later issues (e.g.
inconsistent naming, dead code).

Documentation
Small issues that relate to any part of the documentation (design specification,
code documentation, or other audited documents). This category does not
cover faulty design.

Optimization Ideas on how to increase performance or decrease costs.

30

E Report revisions
This appendix contains the changelog of this report. Please note that the versions of the
reports used here do not correspond with the audited application versions.

v1.0: Main audit
Revision date: 2023-12-21
Final commit: d2157cc1e759259d25d41961a28cc042daabb2cd

We conducted the audit of the main application. To see the files audited, see Executive
Summary.

Full report for this revision can be found at url.

31

https://github.com/vacuumlabs/audits/blob/master/reports/fluidtokens-p2p-loans-v3-v1.0.pdf

F About us

Vacuumlabs has been building crypto projects since the early days.

1. We helped create WingRiders, currently the second largest decentralized exchange
on Cardano (based on TVL).

2. We are behind the popular AdaLite wallet. It was later improved into a multichain
wallet NuFi.

3. We built the Cardano applications for the hardware wallets Ledger and Trezor.

4. We built the first version of the cutting-edge decentralized NFT marketplace Jam On
Bread on Cardano with truly unique features and superior speed of both the interface
and transactions.

Our auditing team is chosen from the best.

1. Talent from esteemed Cardano projects: WingRiders and NuFi

2. Rich experience across Google, traditional finance, trading and ethical hacking

3. Award-winning programmers from ACM ICPC, TopCoder and International Olympiad
in Informatics

4. Driven by passion for program correctness, security, game theory and the blockchain
technology

32

Contact us:
audit@vacuumlabs.com

	Revision table
	Executive summary
	Project overview
	Audit overview
	Summary of findings

	Severity overview
	FTA2-001 The same bond NFT can be minted multiple times
	FTA2-002 Borrower can claim his collateral prematurely
	FTA2-003 Borrower can steal the whole content of a collection offer pool
	FTA2-101 Lender and borrower bonds use the same policy
	FTA2-102 Repayments are locked when active loan is claimed
	FTA2-201 Double satisfaction in the loan amount payment
	FTA2-301 Script hashes in the code are placeholders
	FTA2-302 Duplications of type declarations
	FTA2-303 Min Ada is not handled by the smart contract
	FTA2-304 Undefined repayments' staking credential
	FTA2-401 Aiken warnings
	FTA2-402 Helper functions are declared multiple times
	FTA2-403 Graveyard design improvement
	FTA2-404 Incorrect documentation of the loan request's redeemer
	FTA2-405 Undocumented assumptions and unchecked fields
	FTA2-406 Naming and shadowing

	Appendix
	Disclaimer
	Audited files
	Methodology
	Issue classification
	Report revisions
	About us

