vacuumlabs

FluidTokens Peer-to-Peer Lending (EVM)
Audit Report v1
September 27, 2023

Contents

Revision table 1
1 Executive summary 2
Projectoverview 2
Auditoverview 3
Summary offindings 3
2 Severity overview 5
FTEA-001 Contract tokens can be stolen due to incorrect usage
of approve and transfer 8
FTEA-002 Borrower needs twice the borrowed balance to re-
pay a nativetokenloan 9
FTEA-003 Borrower can withdraw collateral without repaying
theloan 10
FTEA-101 Withdrawing the last repaymentlocks other unclaimed
repayments 11
FTEA-102 Unclaimed repayments are locked after the collat-
eralisclaimed 12
FTEA-103 Usage of transferFrom method for ERC-20 tokens 13
FTEA-104 Missing incentives for repaying in installments 14
FTEA-105 Loan and collateral are transferred to the borrower
instead of the bondowner 15
FTEA-201 Loan request expiration is not enforced 16
FTEA-202 Lender needs twice the required balance to lend to
anativetokenloan L L 17
FTEA-203 Possible to flash loan any contract’'s token for the
transaction 18

FTEA-204 Events can be emitted with wrong data due to reen-

trancy 19
FTEA-301 Anyone can setup thecontracts 20
FTEA-302 Incorrect loan and interest calculation in the last in-

stallment 21
FTEA-303 Duplicated storageofdata 22

FTEA-304 NFTs can be locked inthe contract 23

FTEA-305 Repayment structure is notnecessary 24
FTEA-306 Excessive repayment is recorded as a single install-

mentrepaid 25
FTEA-307 Dependencies are not committed into the repository 26
FTEA-401 Floatingpragma 27
FTEA-402 Usage of unnamed constants 28

FTEA-403 Usage of public functions where external can be used 29
FTEA-404 Unnecessary check of collateral token’s owner and

approval 30
FTEA-405 No tokenData clean-up after bond’'sburn 31
FTEA-406 Bonds' operator can not act on behalf of the owner . 32
FTEA-407 Use call instead of transfertomove ETH 33
FTEA-408 Code styleissues 34

Appendix 35
A Disclaimer 35
B Audited files 37
C Methodology 38
D Issue classification 40
E Report revisions 42
F About us 43

Revision table

Report version Report name Date Report URL

10 Main audit 2023-09-27 Full report link

https://github.com/vacuumlabs/audits/blob/master/reports/fluidtokens-p2p-lending-evm-v1.0.pdf

1 Executive summary

THIS REPORT DOES NOT PROVIDE ANY WARRANTY OF QUALITY OR SECURITY OF THE AUDITED CODE
and should be understood as a best efforts opinion of Vacuumlabs produced upon re-
viewing the materials provided to Vacuumlabs. Vacuumlabs can only comment on the
issues it discovers and Vacuumlabs does not guarantee discovering all the relevant is-
sues. Vacuumlabs also disclaims all warranties or guarantees in relation to the report to
the maximum extent permitted by the applicable law. This report is also subject to the full
disclaimer in the appendix of this document, which you should read before reading the
report.

Project overview

The project offers a peer-to-peer decentralized lending with an NFT collateral. The
smart contract is intended to be used on Milkomeda (Cardano EVM Sidechain) first, but
the code could work on every EVM chain. The contract is the first step of FluidTokens to
showcase the EVM capabilities and to increase their community. A person interested in
borrowing some assets (a borrower) can create a loan request that contains all the loan
information, including an amount and an asset to be lent, an interest amount, a duration
of the loan, and a number of installments in which the loan will be paid back. They back
this request with the collateral that is locked in the contract. The collateral is a single
NFT. The borrower can cancel the loan request before it is accepted.

Anyone can accept this loan request (a lender) by sending an appropriate amount of
the specified loan asset to the borrower. The borrower is then obliged to pay back the
loan amount with the interest according to the agreed-upon terms. The total loan and
interest amounts are split evenly among the whole loan duration and need to be repaid
regularly — the first installment is due in the first portion of the total loan duration, etc.

If any single loan repayment is not paid on time, the lender can claim the collat-
eral —the underlying NFT. There are no other liquidation options, e.g. there’'s no liquidation
option because of a drop in the value of the collateral backing the loan.

The access to a loan is managed by bond tokens — one is minted for a borrower and
one is minted for a lender, both when the lender is accepting the loan. The borrower's
bond token can be used to pay an installment. The lender’'s bond token can be used to
claim a repayment or to claim the collateral in case a repayment is not repaid on time.

As only these tokens control access to the mentioned functions, they can be sold or
moved to other addresses. The responsibilities, rights, as well as entitlements of the

respective party are transferred alongside the bond token ownership.

Audit overview

We started the audit at commit b806d2ffdbc216c14e0@695b8£776745729b77d9%e and
it lasted from 28 July 2023 to 27 September 2023. Because of multiple needed iterations
and because of the fact that this was our first EVM audit, the audit lasted longer than a
typical audit of a similar size would. We interacted mostly on Discord and gave feedback
in GitHub pull requests. The team fixed all issues to our satisfaction.

The scope of the audit was limited to the smart contracts only. We did not audit any
OpenZeppelin or other libraries that were used in the code. We did not review nor see
any tests as part of this audit, and no tests were included in the repository.

As a suggestion for further enhancing the codebase, we recommend integrating tests
into the repository and incorporating them into the regular development workflow. We
believe that such a step would proactively identify and resolve various issues we encoun-
tered in the pull requests addressing the findings outlined in this report.

We performed a design review along with a deep manual audit of the code, ran static
analysis tools and reported findings along with remediation suggestions to the team in
a continuous fashion, allowing the time for a proper remediation that we reviewed after-
wards. We also supplied proof of concepts demonstrating the vulnerabilities on multiple
occasions. See more about our methodology in Methodology.

The commit 95650b663baddbbf07d8fcf489b8a8e1473f7a32 represents the final
version of the code. The status of any issue in this report reflects its status at that commit.
You can see all the files audited and their hashes in Audited files. The smart contract
language used is Solidity and the contracts are intended to run on Milkomeda —a Cardano
EVM sidechain.

Summary of findings

During the audit, we found and reported: 3 critical, 5 major, 4 medium, 7 minor, and 8
informational findings. All findings were fully resolved.

Some issues were caused by the overall design and a lack of documentation. This
affected mostly the bond tokens - their handling and the transfer of responsibilities. We
have helped the Fluid Tokens' team clarify and simplify the design of the smart contract.

Another set of vulnerabilities was caused by various possible reentrancies. Although
the design contained some prevention measures that were implemented, they changed

during the rework and were not sufficient anymore. For this, a more robust reentrancy
guard was implemented using an OpenZeppelin library that prevents the reentrancy alto-
gether.

There were also issues with the token transfers, making it possible for them to become
either stolen or frozen in the contract.

The code went through several changes. Some of those changes introduced new vul-
nerabilities and bugs, even of critical severity, that are not present in this report. These
issues were small in scope and would be categorized as Code issues. They were spot-
ted during the pull request review process and were quickly fixed so we haven't created
separate issue findings for them. The fact is sometimes noted in the Resolution section
of the relevant findings, though.

2 Severity overview

7
4
Critical Major Medium Minor Informational
Findings
ID TITLE SEVERITY STATUS

Contract tokens can be stolen due to

FTEA-001 |
incorrect usage of approve and transfer
ETEA-00D Borrower needs twice 'the borrowed
balance to repay a native token loan
Borrower can withdraw collateral without
FTEA-003 .
repaying the loan
Withdrawing the last repayment locks other
FTEA-101 .
unclaimed repayments
FTEA-102 Unclaimed repayments are locked after the

collateral is claimed

Continued on next page

FTEA-103

FTEA-104

FTEA-105

FTEA-201

FTEA-202

FTEA-203

FTEA-204

FTEA-301

FTEA-302

FTEA-303

FTEA-304

FTEA-305

FTEA-306

FTEA-307

FTEA-401

FTEA-402

TITLE SEVERITY STATUS

Usage of transferFrom method for
ERC-20 tokens

Missing incentives for repaying in
installments

Loan and collateral are transferred to the
borrower instead of the bond owner

Loan request expiration is not enforced MEDIUM

Lender needs twice the required balance to

. MEDIUM
lend to a native token loan

Possible to flash loan any contract's token

. MEDIUM
for the transaction

Events can be emitted with wrong data due
to reentrancy

MEDIUM

Anyone can setup the contracts MINOR

Incorrect loan and interest calculation in the

. MINOR
last installment

Duplicated storage of data MINOR

NFTs can be locked in the contract MINOR

Repayment structure is not necessary MINOR

Excessive repayment is recorded as a single

. . MINOR
installment repaid

Dependencies are not committed into the

. MINOR
repository

Floating pragma

Usage of unnamed constants

Continued on next page

FTEA-403

FTEA-404

FTEA-405

FTEA-406

FTEA-407

FTEA-408

TITLE SEVERITY STATUS

Usage of public functions where external
can be used

Unnecessary check of collateral token's
owner and approval

Bonds' operator can not act on behalf of the
owner
Use call instead of transfer to move ETH --

FTEA-001 Contracttokens can be stolen due
toincorrect usage of approve and transfer

Category Vulnerable commit Severity Status
Logical Issue b806d2ffdb CRITICAL RESOLVED
Description

Assuming the interest tokens or the loan tokens are ERC-20 tokens, the contract both ap-
proves and transfers the tokens to the lender in the withdrawRepayment function. How-
ever, the transfer function call in the ERC-20 standard does not reset the allowance
from the approve call —as opposed to calling the transferFrom function which correctly
updates the allowance.

This means that the lenders can get the tokens twice — the first time, they are sent
to them directly using the transfer function; then they can withdraw the same amount
themselves again because it was approved by the approve function.

This allows an attacker to drain all the liquidity from the contract. First, they create
a loan for some amount of tokens. Then, they lend the tokens to themselves, instantly
repaying them and withdrawing twice the amount. They repeat the process until no ERC-
20 tokens are left in the contract.

Recommendation

The approve function calls are not necessary in the code and it is possible to simply
remove them. Calling the transfer function is enough.

Resolution

The issue was fixed according to our recommendation in the pull request number 1.

FTEA-002 Borrower needs twice the borrowed
balance to repay a native token loan

Category Vulnerable commit Severity Status
Logical Issue b806d2ffdb CRITICAL RESOLVED
Description

Let's assume that either the loan or the interest token is native (the token address is set
to the zero address). When repaying the loan, the code checks that the balance of the
message sender is greater than the amount he is paying in the repayLoan function. As the
msg.value is excluded from the msg. sender.balance, this check is redundant. What's
more, it prevents a repayment if the balance of the borrower is low. As the function checks
both the funds sent in the transaction and the outstanding balance of the borrower, the
borrower needs to keep in his wallet as much tokens as he is repaying for it to succeed.
As an example, let us consider a borrower holding 0 Eth that is borrowing 50 against
his NFT. He would need to have 100 Eth to be able to repay it all in one installment. In
particular, he needs to satisfy both the following checks: msg.sender.balance >= in-
stallmentLoanAmnt and availableTxValue >= installmentLoanAmnt.

This vulnerability can lead to liquidations of users who could repay their loans fully, but
do notown enough additional tokens. We consider the vulnerability to be critical, because
fair liquidations are the basis of trust in this type of contracts.

Recommendation

The check of msg. sender.balance is unnecessary in this situation and we recommend
removing the checks using it.

Resolution

The issue was fixed according to our recommendation in the pull request number 1.

FTEA-003 Borrower can withdraw collateral
without repaying the loan

Category Vulnerable commit Severity Status
Logical Issue 26864b1ffb CRITICAL RESOLVED
Description

Let's assume an attacker that creates a valid loan request with an NFT collateral. They
will set a borrower address to their own malicious smart contract that implements the
onERC721Received function. The onERC721Received can then perform a reentrancy
attack.

When the loan is accepted, the Lend function mints a bond token and sends it to the
borrower address, triggering the onERC721Received. Let's make that function call the
cancelLoan function. All requirements for the cancellation are fulfilled, so the borrower
withdraws the collateral. However, the Lend function execution is also successful and the
borrower receives the loan amount as well. The loan is not backed by any collateral and
both the loan and the collateral are claimed by the attacker.

Recommendation

This reentrancy attack can be prevented by following the checks-effects-interactions de-
sign pattern. If the loan status is set to ACTIVE before the minting of bond tokens, the
cancellation won't be possible anymore.

Resolution

The issue was fixed in the pull request number 8 by implementing reentrancy guards as
recommended in FTEA-203.

FTEA-101 Withdrawing the last repayment
locks other unclaimed repayments

Category Vulnerable commit Severity Status
Design Issue b806d2ffdb MAJOR RESOLVED
Description

When the last repayment is withdrawn, the bond token of the lender is burned in the with-
drawRepayment function. If the repayments are not withdrawn in order, the rest of the re-
payments is locked in the contract forever. Neither the lender nor the project can access

them.
The frequency of the scenario happening depends much on the Ul. However, as mul-
tiple repayments need to be withdrawn in multiple function calls, we consider it likely.

Recommendation

We recommend tracking the number of withdrawn repayments for each loan - either in
the contract or in the bonds token itself. Burn the token only after all the repayments are
withdrawn.

Resolution

The issue was fixed in the pull request number 2 indirectly by addressing the issue FTEA-
305 firstand making sure that any repayment withdrawal claims all the outstanding amounts.

FTEA-102 Unclaimed repayments are locked
after the collateral is claimed

Category Vulnerable commit Severity Status
Design Issue b806d2ffdb MAJOR RESOLVED
Description

When a borrower can not repay an installment on time, the lender can claim the collateral.
However, claiming the collateral burns the lender’s bond token. Any repayments that have
been made by the borrower and have not been claimed by the lender are rendered inac-
cessible and are locked inside the contract.

This handling is unintuitive for the users. Similar to the previous issue FTEA-101, the
frequency of the issue occuring depends on the used Ul. However, a straightforward Ul is
vulnerable and so we deem it of major severity. The impact is that the unclaimed repay-
ments would accumulate inside the contract with no way to retrieve them.

Recommendation

Only burn the lender’s bond token when there are no more repayments in the contract.

Resolution

The issue was fixed according to our recommendation in the pull request number 4.

FTEA-103 Usage of transferFrom method
for ERC-20 tokens

Category Vulnerable commit Severity Status
Logical Issue b806d2ffdb MAJOR RESOLVED
Description

All ERC-20 tokens should implement the transferFrom method thatreturns a boolean as
a result. However, not all ERC-20 tokens are compliant with the standard, including some
of the well known tokens. Most notably, the Tether (USDT) token uses a transferFrom
method that does not return any value'.

This can cause a critical failure in the smart contract. Let's assume that the loan is cre-
ated and the interestToken is set to Tether or a similar non-compliant ERC-20 token. If
the loan is accepted, the installments are impossible to be paid as the require statement
for the transferFrom function call of the token is not fulfilled due to the missing return
value. Such loans will be liquidated every time even if the borrowers have the means to
pay them back.

Recommendation

When working with ERC-20 tokens, one needs to assume that not all token implementa-
tions are compliant with the standard. For this use case, the SafeERC20 library provided
by OpenZeppelin can be used. The library handles such cases and returns corrected val-
ues compliant with the standard.

Resolution

The issue was fixed according to our recommendation in the pull request number 2.

https://etherscan.io/token/0xdac17f958d2ee523a2206206994597c13d831ec7#code

https://etherscan.io/token/0xdac17f958d2ee523a2206206994597c13d831ec7#code

FTEA-104 Missing incentives for repaying in
installments

Category Vulnerable commit Severity Status
Design Issue b806d2ffdb MAJOR RESOLVED
Description

The implementation supports repaying a loan in several installments whose number is
agreed upon in the loan request. However, there is no incentive for anyone to use this
option. The smart contract only checks that all the installments are repaid before the end
of the loan period. Similarly, a liquidation is only possible after the loan period is over and
one or more installments are still not repaid.

Let's say that a borrower can not pay the last installment. In such a case she is lig-
uidated and she also loses all her previously paid installments. Therefore, the incentive
for borrowers is to pay all the installments at the end of the loan period. That means that
the lender can not expect any payments to be made before the end of the period. That
makes the option of setting up several installments in the contract unnecessary and the
code related to it nonessential.

Recommendation

Depending on the business logic, the code could either be simplified by removing the op-
tion to pay in installments, or it should introduce an incentive to adhere to the repayment
schedule - e.g. by adding a liquidation option as soon as any installment is not repaid in
time.

Resolution

The code introducing an incentive to adhere to the repayment schedule was introduced
in the pull request number 1. A borrower may be liquidated if she is late with repaying any
installment.

FTEA-105 Loan and collateral are transferred
to the borrower instead of the bond owner

Category Vulnerable commit Severity Status
Design Issue 6b5f7a7eal MAJOR RESOLVED
Description

The bond tokens are intended to be traded with all their responsibilities, rights and enti-
tlements. However, the loan is transferred directly to the initial creator of the loan request.
The collateral is also returned directly to the original borrower.

This makes the option of transferring the borrower’s bond token impractical as the new
owner would not be able to retrieve the collateral locked in the loan even if he repays the
loan with interest. As a result, there is no incentive for him to do it.

Recommendation

Instead of the original borrower, the recipient of the loan payment and, more importantly,
that of the collateral should be the owner of the borrower’s bond token or an entity entitled
to act on his behalf — the msg. sender in the case of the last repayLoan function call. In
fact, the borrower parameter in the LoanRequestData may become obsolete and could
be removed.

Resolution

The loan is still paid to the initial borrower, but the code enabling a claim of the collateral
now transfers it to the current owner of the bond token. The changes were implemented
in pull requests number 6. The change, however, contained a bug where the borrower's
bond token was burned before the collateral was transferred to its owner, thus causing
the borrower to never get back the collateral — even after the loan repayment. This bug
was found during the pull request review process and correctly fixed in the pull request
number 7.

FTEA-201 Loan request expiration is not en-
forced

Category Vulnerable commit Severity Status
Logical Issue b806d2ffdb MEDIUM RESOLVED
Description

The requestExpiration configuration is not enforced in the code. Therefore, calling
the Lend function on an expired loan leads to a succesful loan creation. The expected
behavioris that the only interaction allowed with an expired loan should be its cancellation
by its owner. Borrowers rely on the contract ensuring that the expiration date is enforced.
They may not want to borrow after a certain time.

Recommendation

Check the requestExpiration in the Lend function against the current block times-
tamp.

Resolution

The issue was addressed in the pull request number 1. The fix, however, did not address
the issue correctly. It checked that the requestExpiration was equal to the current
block timestamp during lending which made it impossible for lenders to lend to any loan
request. A potential lender would need to lend exactly in the moment of the loan expira-
tion which is near impossible.

We noticed this bug during the pull request review process and it was fixed in the pull
request number 3.

FTEA-202 Lender needs twice the required
balance to lend to a native token loan

Category Vulnerable commit Severity Status
Logical Issue b806d2ffdb MEDIUM RESOLVED
Description

When lending to a loan with the native loan token (the token address is set to the zero
address), the Lend function checks that the balance of the message sender is greater
than or equal to the amount that is being lent. This check is redundant and prevents him
from lending in certain conditions. That is because the msg.value is already excluded
from the msg. sender.balance. As the function checks both of them, the lender needs
to keep in his wallet as much tokens as he is lending for it to succeed.

This vulnerability has similar root cause as FTEA-002. However, as this vulnerability
does not cause unfair liquidations we set lower severity to it.

Recommendation

The check of the msg. sender.balance is unnecessary in this situation and we recom-
mend removing it.

Resolution

The issue was fixed according to our recommendation in the pull request number 1.

FTEA-203 Possible to flash loan any contract’s
token for the transaction

Category Vulnerable commit Severity Status
Logical Issue 26864b1ffb MEDIUM RESOLVED
Description

The currentimplementation of the protocol allows anyone to loan any amount of any token
that is present in the contract for the duration of the transaction — also called a flash loan.
The protocol neither aims to provide such a functionality nor receives any fees for it.

The attack is performed by a borrower creating a loan request specifying a big interest
amount of a wanted token —the amount and the token he wants to lend — and a malicious
collateral token or a loan token address. He then himself fulfills the loan request. Note
that the loan amount is not important.

The flash loan happens in the repayLoan function after both the totalRepaidLoan
and the totalRepaidInterest are incremented but the tokens are not yet transferred.
It is possible for him to reenter into the withdrawRepayment function from either his ma-
liciously set collateral asset or the loan asset. By doing so, he is able to withdraw any
amount of the interest token before it is repaid. Although the lent amount needs to be re-
turned, this exploit can be used to manipulate the market or to gain an unfair advantage.

Recommendation

To prevent this exploit, we recommend implementing a non-reentrant mutex across all
main state modifying functions. This can be achieved by using OpenZeppelin's Reen-
trancyGuard contract. This will also help to prevent other reentrancy attacks related to
manipulating event values. You can find more information about this in the OpenZeppelin
documentation?.

Resolution

The issue was fixed according to our recommendation in the pull request number 8.

2https://docs.openzeppelin.com/contracts/4.x/api/security#ReentrancyGuard

https://docs.openzeppelin.com/contracts/4.x/api/security#ReentrancyGuard

FTEA-204 Events can be emitted with wrong
data due to reentrancy

Category Vulnerable commit Severity Status
Logical Issue 26864b1ffb MEDIUM RESOLVED
Description

In several functions, it is possible to create an event with wrong data due to reentrancy. It
does not pose any security risk to the on-chain protocol but results in wrong events being
emitted which are likely heavily depended upon in the other application components.

For example, suppose that during the repayLoan call, another repayLoan is called as
a result of a reentrance from a token transfer. The loan variable currentInstallment
will be raised two times and this new value will be used for both the LoanRepaid events.
Therefore, two events with the same currentInstal lment will be emitted.

A similar attack is feasible in the createLoan function.

Although this behavior can not be used to steal funds or otherwise compromise the
protocol on-chain, it can affect any off-chain application that relies on these events.

Recommendation

This issue could be fixed in various ways — either by strictly following the checks-effects-
interactions design pattern or by using only local variables to emit the events. However,
we recommend using OpenZeppelin’s ReentrancyGuard contract that can protect func-
tions from reentrancies as was already recommended in the previous finding FTEA-203.

Resolution

The issue was fixed in the pull request number 8 by implementing reentrancy guards as
recommended in FTEA-2083.

FTEA-301 Anyone can setup the contracts

Category Vulnerable commit Severity Status
Logical Issue b806d2ffdb MINOR RESOLVED
Description

The setupPlatform function is public, therefore available for anyone to call. As a result,
anyone can front-run the call and use their own malicious bondsAddress. A contract
initialized that way would need to be redeployed. However, if noticed, it could all be re-
done before users interacted with the contract.

Recommendation

We recommend one of the two approaches:
* You could write a new deployer smart contract that would properly and, most im-
portantly, atomically initialize both the bonds . sol and the ft_p2p.sol.

* You could introduce an owner variable to the ft_p2p.sol contract and allow only
the owner to call the setupPlatform function.

Resolution

The issue was fixed by introducing a constant address that belongs to Fluid Tokens and
checking it to be equal to the caller of the setupPlatform function across the pull re-
quests number 1 and 2.

FTEA-302 Incorrect loan and interest calcu-
lation in the last installment

Category Vulnerable commit Severity Status
Code Issue b806d2ffdb MINOR RESOLVED
Description

The functions getLoanAmountForInstallment and getInterestAmountForInstall-
ment calculate the loan and interest amounts that should be paid in an installment. The
first installments simply divide the overall value to be paid by the number of installments.
That creates rounding errors that are covered in the last installment. However, the final
calculation is incorrect due to missing parentheses.

Due to the flooring nature of the integer division in Solidity, we have the following:

la-b/c] = a-[b/c]

The overall difference between the two expressions is at most a — the number of install-
ments in our case. Therefore, less funds need to be paid in total creating a slight loss for
the lender.

Recommendation

Fix the formulas for the calculation of the last installment and interest amounts to correctly
reflect the already repaid value.

Resolution

The issue was fixed according to our recommendation in the pull request number 2.

FTEA-303 Duplicated storage of data

Category Vulnerable commit Severity Status
Optimization b806d2ffdb MINOR RESOLVED
Description

The same information is often stored in multiple places of the code. For example, the
bonds token keeps track of all the loan’s parameters, even though the data is not used
anywhere else in the smart contract. The impact of this can be twofold:

* Optimization problems — by keeping the same information in multiple places, the
gas costs increase.

* Possible bugs—when multiple components track the same data, there is an increased
possibility of introducing bugs if these components become desynchronized.

Recommendation

We recommend removing all unused variables from structures to simplify the code and
reduce gas costs. We also suggest identifying a single source of truth for each piece of
information and storing it solely there.

Resolution

The issue was fixed according to our recommendation in the pull request number 2.

FTEA-304 NFTs can be locked in the con-
tract

Category Vulnerable commit Severity Status
Logical Issue b806d2ffdb MINOR RESOLVED
Description

The contract implements the TERC721Receiver interface. According to the documen-
tation, the purpose of this interface is to prevent NFTs from becoming forever locked in
contracts. However, the onERC721Received function does not check that the token is
sent to the contract during the createLoan call. Therefore, any NFTs that are sent directly
to the contract are locked forever and the interface is not implemented correctly.

Recommendation

As the contract can only receive NFTs in one specific use case (during the createLoan
call), the onERC721Received function should revert when NFTs are sent to the contract
in any other way. You can check the caller of the safeTransferFrom by looking at the
operator parameter.

Resolution

The issue was fixed according to our recommendation across the pull requests number 2
and 4.

FTEA-305 Repayment structure is not nec-
essary

Category Vulnerable commit Severity Status
Design Issue b806d2ffdb MINOR RESOLVED
Description

Currently, a borrower and a lender agree upon a fixed number of repayments. Then, all
the installments need to be paid across separate transactions. What's more, all the repay-
ments need to be claimed by the lender in separate transactions as well.

In addition to that, the Repayment structure unnecessarily duplicates some fields and
thus wastes gas. It also requires counters to keep track of how many repayments were
paid, how many were withdrawn; and thus complicates the code.

Recommendation

We recommend redesigning the application and removing the Repayment structure alto-
gether. Instead, we suggest keeping track of the total repaid loan and interest amounts
and the total withdrawn loan and interest amounts. You can still enforce fixed repayment
amounts if you want to. An added benefit of the redesign is a support for multiple repay-
ments/withdrawals in a single transaction.

Resolution

The repayment structure was changed according to our recommendation in the pull re-
quest number 2. In the new repayment structure, the value of the totalWithdrawnLoan,
the amount the lender has withdrawn from the repayments, was not updated when the
lender was withdrawing a repayment. This caused a bug where a lender could drain the
whole contract by withdrawing the repayment multiple times. We noticed this bug during
the pull request review process and it was fixed in the pull requests number 3 and 4.

FTEA-306 Excessive repayment is recorded
as a single installment repaid

Category Vulnerable commit Severity Status
Logical Issue b806d2ffdb MINOR RESOLVED
Description

Currently, when multiple installments are sent to the repayLoan function, they are recorded
as a single installment repaid. This issue concerns ETH repayments only and arises when

the msg.value is greater than or equal to the installment loan plus interest amounts. This

can be particularly problematic if users call the function directly, as they may unintention-
ally overpay without realizing that the excess funds are not properly accounted for. Fur-
thermore, these excess funds become inaccessible and are locked within the contract.

Recommendation

We recommend either modifying the function to revert when the msg. value exceeds the
expected installment amount or documenting and communicating this behavior clearly
to inform users.

Alternatively, you could adjust the function to correctly record potentially multiple in-
stallments when the msg. value is greater than the installment loan plus interest amounts.
The handling suggested in the issue FTEA-305 would enable accounting even for frac-
tional repayments. This would prevent excess funds from being locked in the contract
and ensure accurate tracking of repayments.

Resolution

The code reverts if the msg.value contains more than is necessary. The change was
implemented in the pull request number 8.

FTEA-307 Dependencies are not committed
into the repository

Category Vulnerable commit Severity Status
Code Issue 26864b1ffb MINOR RESOLVED
Description

The contract's dependencies such as ERC721, SafeERC20 and others, are not committed
into the repository. Some of those dependencies were provided upon request, butitis cru-
cial to have them committed so that their specific version is fixed. This helps ensure that
they are not unintentionally changed and guarantees that the same version that is tested
is also the one deployed. It enhances the reliability and consistency of the codebase.

It is particularly important as an internal function of the ERC721 implementation is
used in the bonds contract and there are differences in the naming of that function across
different ERC721 implementations.

Recommendation

We recommend committing all dependencies into the repository.

Resolution

The issue was fixed according to our recommendation in the pull request number 8.

FTEA-401 Floating pragma

Category Vulnerable commit Severity Status
Code Issue b806d2ffdb INFORMATIONAL RESOLVED
Description

The files bonds.sol and ft_p2p.sol use a floating pragma 70.8.7. The code could
therefore potentially be compiled by a different compiler than it was tested on.

Recommendation

We recommend fixing the pragma to a specific compiler version to prevent any unwanted
inconsistencies between development and deployment.

Resolution

The issue was fixed according to our recommendation in the pull request number 1.

FTEA-402 Usage of unnamed constants

Category Vulnerable commit Severity Status
Code Style b806d2ffdb INFORMATIONAL RESOLVED
Description

The code uses unnamed integer constants to track the status of loans and repayments.
Unnamed constants can lead to confusion and potential bugs as they lower the readability
of the code.

Recommendation

We recommend changing the status variable in the Loan structure to an enum type, and
to rename the boolean variable named status in the Repayment structure to isWithdrawn
to better reflect the intended meaning.

Resolution

The issue was fixed according to our recommendation in the pull request number 2.

FTEA-403 Usage of public functions where
external can be used

Category Vulnerable commit Severity Status
Optimization b806d2ffdb INFORMATIONAL RESOLVED
Description

All the functions in the code are public which cost more gas than external functions. Public
functions should only be used when they are called both from the outside and from the

contract itself.

Recommendation

We recommend changing the public functions that are not called internally to external.

Resolution

The issue was fixed according to our recommendation in the pull requests number 2 and
8.

FTEA-404 Unnecessary check of collateral
token’'s owner and approval

Category Vulnerable commit Severity Status
Optimization b806d2ffdb INFORMATIONAL RESOLVED
Description

In the createLoan function, one require statement checks that the collateral token is ei-
ther owned by or approved to the msg. sender. However, the check is redundant as the
function later calls safeTransferFrom to transfer the NFT from the msg. sender which
canonly succeed ifthemsg. sender owns the NFT. Also, the first part of the check collat-
eralToken.getApproved(_collateralTokenId) == msg.sender canneverpass, as
the collateral token has to be approved to the smart contract and not to the msg. sender.

Recommendation

Remove the unnecessary check to save gas and simplify the code.

Resolution

The issue was fixed according to our recommendation in the pull request number 2.

FTEA-405 No tokenData clean-up afterbond’s
burn

Category Vulnerable commit Severity Status
Optimization b806d2ffdb INFORMATIONAL RESOLVED
Description

The bonds’ burn function successfully removes the NFT representation of the bond but
leaves the associated TokenData in the contract’s storage. This results in wasted storage
and is inconsistent with the handling of the ownership data.

Recommendation

Add a delete statement to remove the TokenData associated with a burned bond. Ad-
ditionally, consider emitting an event that logs the data before its deletion for off-chain
tracking and analytics.

Resolution

The issue was fixed according to our recommendation in the pull request number 2.

FTEA-406 Bonds’ operator can notacton be-
half of the owner

Category Vulnerable commit Severity Status
Logical Issue b806d2ffdb INFORMATIONAL RESOLVED
Description

The bonds are ERC-721 tokens that represent transferable ownership and the correspond-
ing duty to repay a loan or withdraw repayments. However, the protocol does not utilize
ERC-721's built-in operator functionality even though it utilizes the approve functionality.
Specifically, functions such as lend, withdrawRepayment, and claimCollateral vali-
date the sender’s permission by directly comparing him to the approved address or the
owner of the token. This ignores the possibility that he may be an operator approved to
manage all of the owner's tokens. The problematic code line (indentation is ours):
require(

bonds.getApproved(loan.lenderBondTokenId) == msg.sender
| | bonds.ownerOf(loan.lenderBondTokenId) == msg.sender

)s
This approach limits the flexibility and usability of these bonds, as it restricts the actions
that can be performed by operators who are supposed to act on behalf of the owners.

Recommendation

To fully support ERC-721's approvals and to allow for more flexible management of bonds,
the protocol should use a function similar to the _isApprovedOrOwner internal function
provided by the OpenZeppelin’'s ERC-721 implementation attached. This function checks
not only if the message sender is the current owner or an approved party for a specific
tokenId, but also if he is an operator approved for all tokens owned by the current owner.
This change would allow operators to perform the essential functions on behalf of the
owner, making the system more flexible and consistent with the ERC-721 standard.

Resolution

The issue was fixed according to our recommendation in the pull request number 3.

FTEA-407 Use call instead of transfer to
move ETH

Category Vulnerable commit Severity Status
Logical Issue 6b5f7a7eal INFORMATIONAL RESOLVED
Description

The transfer function for sending ETH has a hard limit for gas. This limit is sufficient for
EOAs and it helps protect the contract from re-entrancy attacks possibly coming from it,
even though it is not recommended to rely solely on that. As a result, it used to be the
preferable choice of transferring ETH.

However, if you want to allow other contracts to interact with your smart contract (e.g.
considering account abstractions), this gas limit may not be sufficient.

Recommendation

Replace the usage of transfer with the call.value when transferring ETH to other
accounts as the call.value does not have a limit on the used gas. Following checks-
effects-interactions pattern is enough to protect from re-entrancy attacks.

Resolution

The issue was fixed according to our recommendation in the pull requests number 6. The
fix contained a bug where the parentheses after the call were missing, thus causing Eth
to not be transferred. The function was not invoked. We noticed this bug during the pull
request review process and it was fixed in the pull request number 7.

FTEA-408 Code style issues

Category Vulnerable commit Severity Status
Code Style 26864b1ffb INFORMATIONAL RESOLVED
Description

During our audit, we identified several code style issues that, while not directly impacting
the security of the contract, could lead to confusion or potential issues in the future.

1. The variable borrowerBondTokenId does not semantically belong to the LoanRe-
gquestData struct anymore. The bond token is minted when a lender accepts the
loan, so it has little meaning inside the loan’s request data. We recommend moving
this variable to the Loan struct instead. Additionally, the inclusion of the borrower-
BondTokenId in the LoanRequestCreated event is unnecessary.

2. The visibility of the LoansCounter variable is not explicitly set. It is a best practice
to explicitly declare the visibility of state variables. Additionally, making it public
helps tests know what id a new loan will receive.

3. TheclaimCollateral function does not strictly follow the checks-effects-interactions
pattern. More precisely, the change of the status variable to CLAIMED should pre-
cede the potential burning of the bond token.

Recommendation
We recommend addressing these code style issues to improve the readability and main-
tainability of the contract.

Resolution

The issue was fixed according to our recommendation in the pull request number 8.

A Disclaimer

This report is subject to the terms and conditions (including without limitation, descrip-
tion of services, confidentiality, disclaimer and limitation of liability) set forth in the agree-
ment between VacuumLabs Bohemia s.r.o. (VAcuumMLABS) and FT Lalbs GmbH (CLIENT) (the
AGREEMENT), or the scope of services, and terms and conditions provided to the Client in
connection with the Agreement, and shall be used only subject to and to the extent per-
mitted by such terms and conditions. THIS REPORT MAY NOT BE TRANSMITTED, DISCLOSED,
REFERRED TO, MODIFIED BY, OR RELIED UPON BY ANY PERSON FOR ANY PURPOSES WITHOUT VAC-
UUMLABS’S PRIOR WRITTEN CONSENT.

THIS REPORT IS NOT, NOR SHOULD BE CONSIDERED, AN ENDORSEMENT, APPROVAL OR DIS-
APPROVAL of any particular project, team, code, technology, asset or anything else. This
report is not, nor should be considered, an indication of the economics or value of any
technology, product or asset created by any team or project that contracts Vacuumlabs
to perform a smart contract assessment. THIS REPORT DOES NOT PROVIDE ANY WARRANTY
OR GUARANTEE REGARDING THE QUALITY OR NATURE OF THE TECHNOLOGY ANALYSED, nor does it
provide any indication of the technology’s proprietors, business, business model or legal
compliance.

To the fullest extent permitted by law, VACUUMLABS DISCLAIMS ALL WARRANTIES, EXPRESSED
OR IMPLIED, IN CONNECTION WITH THIS REPORT, ITS CONTENT, AND THE RELATED SERVICES AND
PRODUCTS AND YOUR USE THEREOF, including, without limitation, the implied warranties of
merchantability, fitness for a particular purpose, and non-infringement. This report is pro-
vided on an as-is, where-is, and as-available basis. Vacuumlabs does not warrant, en-
dorse, guarantee, or assume responsibility for any product or service advertised or offered
by Client or any third party through the product, any open source or third-party software,
code, libraries, materials, or information linked to, called by, referenced by or accessible
through the report, its content, and the related services, assets and products, any hyper-
linked websites, any websites or mobile applications appearing on any advertising, and
VACUUMLABS WILL NOT BE A PARTY TO OR IN ANY WAY BE RESPONSIBLE FOR MONITORING ANY
TRANSACTION BETWEEN YOU AND CLIENT AND/OR ANY THIRD-PARTY PROVIDERS OF PRODUCTS OR
SERVICES.

THIS REPORT SHOULD NOT BE USED IN ANY WAY BY ANYONE TO MAKE DECISIONS AROUND
INVESTMENT OR INVOLVEMENT WITH ANY PARTICULAR PROJECT, services or assets, especially
not to make decisions to buy or sell any assets or products. This report provides general
information and is not tailored to anyone’s specific situation, its content, access, and/or
usage thereof, including any associated services or materials, shall not be considered or

relied upon as any form of financial, investment, tax, legal, regulatory, or other advice.

This report is based on the scope of materials and documentation provided for a lim-
ited review at the time provided. Vacuumlabs prepared this report as an informational
exercise documenting the due diligence involved in the course of development of the
Client's smart contract only, and THIS REPORT MAKES NO CLAIMS OR GUARANTEES CONCERN-
ING THE SMART CONTRACT'S OPERATION ON DEPLOYMENT OR POST-DEPLOYMENT. This report pro-
vides no opinion or guarantee on the security of the code, smart contracts, project, the
related assets or anything else at the time of deployment or post deployment. Smart
contracts can be invoked by anyone on the internet and as such carry substantial risk.
VACUUMLABS HAS NO DUTY TO MONITOR CLIENT'S OPERATION OF THE PROJECT AND UPDATE THE
REPORT ACCORDINGLY.

THE INFORMATION CONTAINED IN THIS REPORT MAY NOT BE COMPLETE NOR INCLUSIVE OF ALL
VULNERABILITIES. This report is not comprehensive in scope, it excludes a number of com-
ponents critical to the correct operation of this system. You agree that your access to
and/or use of, including but not limited to, any associated services, products, protocols,
platforms, content, assets, and materials will be at your sole risk. On its own, it cannot
be considered a sufficient assessment of the correctness of the code or any technology.
This report represents an extensive assessing process intending to help Client increase
the quality of their code while reducing the high level of risk presented by cryptographic
tokens and blockchain technology, however blockchain technology and cryptographic
assets present a high level of ongoing risk, including but not limited to unknown risks and
flaws.

While Vacuumlabs has conducted an analysis to the best of its ability, it is Vacuum-
labs’'s recommendation to commission several independent audits, a public bug bounty
program, as well as continuous security auditing and monitoring and/or other auditing
and monitoring in line with the industry best practice. The possibility of human error in
the manual review process is highly real, and Vacuumlabs recommends seeking multiple
independent opinions on any claims which impact any functioning of the code, project,
smart contracts, systems, technology or involvement of any funds or assets. VACUUMLABS’S
POSITION IS THAT EACH COMPANY AND INDIVIDUAL ARE RESPONSIBLE FOR THEIR OWN DUE DILI-
GENCE AND CONTINUOUS SECURITY.

B Audited files

The files and their hashes reflect the final state at commit
95650b663baddbbf07d8fcf489p8a8el473f7a32 after all the fixes have been imple-
mented.

SHA256 hash Filename
0586b...55f92 ft-solidity-p2p-loans-EVM/bonds.sol

e38e5...d688f ft-solidity-p2p-loans-EVM/ft _p2p.sol

Please note that we did not audit other contracts located in other folders of the repos-
itory that are present at the final commit. This includes the OpenZeppelin libraries or the
erc20.sol contract supposedly used only for testing purposes.

C Methodology

Vacuumlabs’ agile methodology for performing security audits consists of several key

phases:

1. Design reviews form the initial stage of our audits. The goal of the design review is

to find larger issues which result in large changes to the code fast.

2. During the deep code audit, we verify the correctness of the given code and scruti-
nize it for potential vulnerabilities. We also verify the client’s fixes for all discovered
vulnerabilities. We provide our clients with status reports on a continuous basis pro-

viding them a clear up-to-date status of all the issues found so far.

3. We conclude the audit by handing over a final audit report which contains descrip-

tions and resolutions for all the identified vulnerabilities.

~ Last
Code changes . code

Found issues reported continuously
New code checked by auditors
Requirements clarified

Design review

Deep code audit

f[change

Writing of the report

Final
report

Throughout our entire audit process, we report issues as soon as they are found and
verified. We communicate with the client for the duration of the whole audit. During our

audits, we check several key properties of the code:

Vulnerabilities in the code

Adherence of the code to the documented business logic

Potential issues in the design that are not vulnerabilities

Code quality

Ethereum audits

During Ethereum Virtual Machine (EVM) audits, we primarily use a manual approach to
identify vulnerabilities and other issues. We are on a hunt for all Smart Contract Weak-
nesses®, which include issues such as:

* Unencrypted private data on-chain

* Message calls with hardcoded gas amounts

* Unexpected Ether balances

* Requirement violations

* Missing protection against signature replay attacks

* Weak sources of randomness from chain attributes

* Signature malleability

* Transaction order dependence

* Delegatecall to untrusted callees

* Use of deprecated Solidity functions

* Reentrancy

* Floating pragma

e Outdated compiler versions

* Integer overflow and underflow

In addition to these well-known vulnerabilities, we also check the code for project-
specific vulnerabilities, business logic flaws and game theoretic (lack of) incentives. We
use several automated tools to expedite our audit; however, we do not solely rely on them
and manually verify the results of those tools. The tools include but are not limited to:

e Slither

e Mythril

* Woke

We also provide the client with proof-of-concept tests that demonstrate the exploitability
of the most critical issues or otherwise interesting or harder-to-verify issues.

®https://swcregistry.io/

https://github.com/crytic/slither
https://github.com/Consensys/mythril
https://github.com/ackee-Blockchain/woke
https://swcregistry.io/

D Issue classification

Severity levels

The following table explains the different severities.

Severity Impact
- Theft of user funds, permanent freezing of funds, protocol insolvency, etc.
- Theft of unclaimed yield, permanent freezing of unclaimed yield, temporary
freezing of funds, etc.
MEDIUM Smart contract unable to operate, partial theft of funds/yield, etc.
MINOR Contract fails to deliver promised returns, but does not lose user funds.

INFORMATIONAL = Best practices, code style, readability, documentation, etc.

Resolution status

The following table explains the different resolution statuses.

Resolution status Description

Fix applied.

PARTIALLY

Fix appli tially.
RESOLVED ix applied partially.

Acknowledged by the project to be fixed later or out of scope.

Still waiting for a fix or an official response.

Categories of issues

The following table explains the different categories of issues.

Category

Design Issue

Logical Issue

Code Issue

Code Style

Documentation

Optimization

Description

High-level issues in the design. Often large in scope, requiring changes to the
design or massive code changes to fix.

Medium-sized issues, often in between the design and the implementation. The
changes required in the design should be small-scaled (e.g. clarifying details),
but they can affect the code significantly.

Small in size, fixable solely through the implementation. This category covers all
sorts of bugs, deviations from specification, etc.

Parts of the code that work properly but are possible sources of later issues (e.g.
inconsistent naming, dead code).

Small issues that relate to any part of the documentation (design specification,
code documentation, or other audited documents). This category does not
cover faulty design.

Ideas on how to increase performance or decrease costs.

E Reportrevisions

This appendix contains the changelog of this report. Please note that the versions of the
reports used here do not correspond with the audited application versions.

v1.0: Main audit

Revision date: 2023-09-27
Final commit. 95650b663baddbbf07d8fcf489p8a8el473f7a32

We conducted the audit of the main application. To see the files audited, see Audited
files.
Full report for this revision can be found at url.

https://github.com/vacuumlabs/audits/blob/master/reports/fluidtokens-p2p-lending-evm-v1.0.pdf

F About us

Vacuumlabs has been building crypto projects since the early days.

* We helped create WingRiders, currently the second largest decentralized exchange
on Cardano (based on TVL).

* We are behind the popular AdaLite wallet. It was later improved into a multichain
wallet NuFi.

* We built the Cardano applications for the hardware wallets Ledger and Trezor.

* We built the first version of the cutting-edge decentralized NFT marketplace Jam
On Bread on Cardano with truly unique features and superior speed of the interface.

Our auditing team is chosen from the best.

* Talent from esteemed Cardano projects: WingRiders and NuFi
* Rich experience across Google, traditional finance, trading and ethical hacking

* Award-winning programmers from ACM ICPC, TopCoder and International Olympiad
in Informatics

» Driven by passion for program correctness, security, game theory and the blockchain
technology

We are a trusted Cardano ecosystem development partner

vacuumlabs

Contact us:
audit@vacuumlabs.com

	Revision table
	Executive summary
	Project overview
	Audit overview
	Summary of findings

	Severity overview
	FTEA-001 Contract tokens can be stolen due to incorrect usage of approve and transfer
	FTEA-002 Borrower needs twice the borrowed balance to repay a native token loan
	FTEA-003 Borrower can withdraw collateral without repaying the loan
	FTEA-101 Withdrawing the last repayment locks other unclaimed repayments
	FTEA-102 Unclaimed repayments are locked after the collateral is claimed
	FTEA-103 Usage of transferFrom method for ERC-20 tokens
	FTEA-104 Missing incentives for repaying in installments
	FTEA-105 Loan and collateral are transferred to the borrower instead of the bond owner
	FTEA-201 Loan request expiration is not enforced
	FTEA-202 Lender needs twice the required balance to lend to a native token loan
	FTEA-203 Possible to flash loan any contract's token for the transaction
	FTEA-204 Events can be emitted with wrong data due to reentrancy
	FTEA-301 Anyone can setup the contracts
	FTEA-302 Incorrect loan and interest calculation in the last installment
	FTEA-303 Duplicated storage of data
	FTEA-304 NFTs can be locked in the contract
	FTEA-305 Repayment structure is not necessary
	FTEA-306 Excessive repayment is recorded as a single installment repaid
	FTEA-307 Dependencies are not committed into the repository
	FTEA-401 Floating pragma
	FTEA-402 Usage of unnamed constants
	FTEA-403 Usage of public functions where external can be used
	FTEA-404 Unnecessary check of collateral token's owner and approval
	FTEA-405 No tokenData clean-up after bond's burn
	FTEA-406 Bonds' operator can not act on behalf of the owner
	FTEA-407 Use call instead of transfer to move ETH
	FTEA-408 Code style issues

	Appendix
	Disclaimer
	Audited files
	Methodology
	Issue classification
	Report revisions
	About us

