
FluidTokens Lending v3
Audit Report v1
August 27, 2025

Contents
Revision table 1

1 Executive summary 2
Project overview . 2
Audit overview . 5
Summary of findings . 5

2 Severity overview 8
FTL3-001 Repayments can not be withdrawn 13
FTL3-002 Lender pool funds can be stolen 14
FTL3-003 Collateral can not be withdrawn 15
FTL3-004 Lender can claim the whole collateral in a dutch auc-

tion before start . 16
FTL3-005 Lender can claim the whole collateral in an auction

by malicious address . 17
FTL3-006 Blocking funds and gaining unfair advantage by adding

a programmable token . 19
FTL3-007 Ada collateral is not protected in requests 21
FTL3-008 Lender can disable repaying and liquidate 22
FTL3-009 Loan token can not be minted for programmable to-

ken loans . 23
FTL3-010 Repayment token can not be minted for programmable

token loans . 24
FTL3-011 Protocol is unfeasible due to usage ofget_outputs_-

to_smart_credential . 25
FTL3-012 Dutch auction’s borrower compensation goes to the

lender . 27
FTL3-013 AMM formulas are incorrect 28
FTL3-014 Wrong arguments in conversion from Ada to token . . 30
FTL3-015 Healthy loans can be liquidated 31
FTL3-016 Amortization formula is wrong 32
FTL3-017 Recasting does not work well with the amortization

formula . 33

FTL3-018 Recasting on due loan installments avoids interest
and penalties . 34

FTL3-019 Inconsistent perpetual loan interest computation . . . 35
FTL3-020 Remaining debt on perpetual loans does not assume

previous payments . 36
FTL3-021 Dutch auction payments can break due to checking

bond addresses . 37
FTL3-022 Perpetual loan recasting logic is incorrect 39
FTL3-023 Loan inputs with programmable assets bypass action

validator checks . 40
FTL3-024 Wrong action credential allows borrowers to unlock

programmable collateral . 41
FTL3-025 Wrong receipt condition allows blocking funds with

programmable assets . 42
FTL3-026 Programmable collateral sent to uncontrollable auc-

tion credential is lost . 43
FTL3-027 Zero liquidation penalty incorrectly skips equity re-

turn to borrower . 45
FTL3-028 Malicious parties can block transactions by holding

bonds without stake credentials 46
FTL3-029 Bond address trusted without bond presence verifi-

cation . 47
FTL3-030 Datums can not be parsed 48
FTL3-031 Wrong config index extracts incorrect loan policy id . 49
FTL3-032 LTV is calculated based on the initial principal 50
FTL3-033 Repayment increments wrong field causing eventual

collateral loss . 51
FTL3-101 DEX oracle computation uses hardcoded fees 52
FTL3-102 Ada in expired requests is vulnerable to double satis-

faction . 53
FTL3-103 Too big loan can liquidate the borrower 54
FTL3-104 Cross-script double satisfaction 55
FTL3-105 Permissioned conditions not enforced for programmable

tokens . 56
FTL3-106 Time unit change error disables recasts 58

FTL3-201 Minting multiple repayment tokens is nearly unfeasible 59
FTL3-202 Request can not be cancelled after expiration by a

different party . 60
FTL3-203 It is possible to lend to an expired request 61
FTL3-204 Pool might be blocked until recreated 62
FTL3-205 Too small Ada equity makes liquidation impossible . . 63
FTL3-206 It might be impossible to add collateral to a non-specific

asset collateral loan . 64
FTL3-207 No liquidation discount . 65
FTL3-208 User stake credentials to authorize programmable to-

ken transfers . 66
FTL3-301 Permissioned lending party is chosen by an index out

of context . 67
FTL3-302 Oracle’s valid_from is unchecked 68
FTL3-303 Dutch auction can be bought before it starts 69
FTL3-304 Indexing repayments in repayment minting policy is

troublesome . 70
FTL3-305 Burning and minting request and pool tokens is in-

convenient . 71
FTL3-306 The principalLTV variable is overused 72
FTL3-307 Ada oracle use is inconsistent 73
FTL3-308 AMM formulas are based on a rational number that is

then rounded . 74
FTL3-309 Oracle safe-guards suggestion 75
FTL3-310 Equity computation charges conversion fees to the

lender . 76
FTL3-311 Pool KYC token signature can be reused to borrow

more . 77
FTL3-312 Unlimited recasts do not work 78
FTL3-313 Borrowers can avoid late repayment penalty 79
FTL3-314 Installment amounts might not add up to the total

principal and interest . 80
FTL3-315 Total installments field for perpetual loans 81
FTL3-316 Hash function mismatch in oracle key verification . . . 82
FTL3-317 Native tokens can be sent to programmable credential 83

FTL3-318 Big bond reference inputs can cause DoS via trans-
action limits . 84

FTL3-401 Dropping a byte of a hash result is discouraged 85
FTL3-402 Request id and pool id might be identical 86
FTL3-403 Equity payment is in the principal asset 87
FTL3-404 Code quality, naming, and documentation issues . . . 88

Appendix 90

A Disclaimer 90

B Audited files 92

C Methodology 95

D Issue classification 97

E Report revisions 99

F About us 100

Revision table
Report version Report name Date Report URL

1.0 Main audit 2025-08-27 Full report link

1

https://github.com/vacuumlabs/audits/blob/master/reports/fluidtokens-lending-v3-v1.0.pdf

1 Executive summary
THIS REPORT DOES NOT PROVIDE ANY WARRANTY OF QUALITY OR SECURITY OF THE AUDITED CODE
and should be understood as a best efforts opinion of Vacuumlabs produced upon re-
viewing the materials provided to Vacuumlabs. Vacuumlabs can only comment on the
issues it discovers and Vacuumlabs does not guarantee discovering all the relevant is-
sues. Vacuumlabs also disclaims all warranties or guarantees in relation to the report to
the maximum extent permitted by the applicable law. This report is also subject to the full
disclaimer in the appendix of this document, which you should read before reading the
report.

Project overview
FluidTokens Lending v3 is a highly customizable decentralized lending platform that sup-
ports both peer-to-peer lending and a kind of single-party liquidity pool-based lending
on Cardano. The protocol enables flexible loan arrangements where borrowers can cre-
ate requests specifying their desired loan terms, while lenders can either accept these
requests or create their own lending pools from which multiple borrowers can take loans.

The platform supports two primary lending mechanisms: static fixed loans with no
price adjustments throughout the term, and dynamic loans where borrowable amounts
are determined dynamically by loan-to-value ratios and prices are determined by oracle-
based price feeds. A key feature is the ability for borrowers to aggregate loans from mul-
tiple pools within a single transaction, providing significant flexibility in sourcing the re-
quired capital. It is important to note that lending pools refer to liquidity provided by a
single party, not multiple parties pooling funds together as in some other DeFi protocols.
Once a loan is taken from a pool, it is a simple peer-to-peer loan between the borrower
and the lender.

Collateral management is comprehensive, supporting both native tokens, NFTs and
CIP-113 programmable tokens (see more below), with each loan from a pool limited to a
single collateral type. The protocol includes sophisticated loan term structures with three
distinct repayment modes:

• Interest on Remaining Principal: Uses full amortization formulae where each install-
ment includes both principal and interest calculated on the remaining balance. There
is a constant installment amount.

2

• Principal and Interest on Installments: Total interest is calculated upfront and divided
evenly across installments.

• Perpetual Loans: The loan can be taken for indefinitely. Borrowers pay only part of
the interest in installments with additional optional linear interest rate increases over
time. The principal remains constant and the whole outstanding debt is paid off at
the end of the loan. The debt increases and thus the collateral value must increase
as well, to still sufficiently cover the debt.

All loan types support configurable grace periods, late payment penalties, liquidation
discounts and flexible installment scheduling.

Loan recasting is optionally available for both Interest on Remaining Principal and Per-
petual Loan modes, allowing borrowers to make additional principal payments to reduce
future installment obligations. Recasting is subject to restrictions including the require-
ment that all due installments plus one additional installment must be paid before recast-
ing is permitted. In perpetual loans, the remaining interest that is not part of installments
needs to be also fully paid off — this can be done directly in the recast transaction. There
are configurable limits on the maximum number of recasts allowed per loan.

Liquidation mechanisms offer four distinct approaches: no liquidation with lenders
claiming full collateral upon default, no liquidation with Dutch auction systems that can
return excess value to borrowers on a who-buys-highest basis, oracle-based liquidation
with full collateral forfeiture, and oracle-based liquidation with partial liquidation where
borrowers receive compensation for collateral value exceeding the debt less the liquida-
tion discount. The protocol also supports partial liquidations where only the necessary
portion of collateral plus a liquidation discount is claimed to cover outstanding obliga-
tions.

Position management is handled through bond tokens minted for both lenders and
borrowers, enabling the transfer of rights and responsibilities through token ownership.
Advanced features include refinancing capabilities and permissioned lending with KYC
token requirements for compliance. Note: The KYC token and its binding to users’ wallets
is outside the scope of this audit. Even though the token’s presence is checked when
lending from a permissioned pool, nothing is checked when the bond token and thus the
position is transferred.

Oracle integration supports two main price feed types:

• In-house oracles: Aggregated feeds from sources such as centralized exchanges
and dedicated feeds for specialized pricing requirements. The price logistics are
outside of the scope of this audit. The on-chain fully trusts the prices provided by
valid oracles and does not check them.

3

• Third-party integrations: Support for external oracle providers including Orcfax and
Charli3. The protocol has means of not allowing some oracle types to be used for
some assets, even though this is hardcoded and can not be easily updated once a
loan is taken.

The protocol implements full CIP-113 programmable token support, allowing seam-
less integration with smart tokens that require additional validation logic during transfers.
A significant portion of the protocol logic is designed to work with programmable tokens,
handling both traditional addresses and programmable token credentials throughout the
system seamlessly. Note that this support is novel and users should be super-cautious of
the types of tokens they are borrowing or lending, as the tokens can be programmable
and malicious programmable tokens can block execution and lead to unforeseen conse-
quences s.a. repayment impossibility.

The protocol’s technical architecture centers around multiple interconnected valida-
tors mostly using transaction-level validation through the withdraw-zero trick, each check-
ing all their delegated inputs found on either a general spend script referring the validation
path, or a programmable credential referring the validation path (CIP-113 programmable
tokens need to be locked at the smart wallet script). The reference is either hardcoded
in the general spend script or noted in the staking credential in the smart tokens’ case.
Overall, this creates a complex but flexible system with multiple extensions possible in
the future.

Important considerations of the protocol include:

• Oracle feeds: Oracle data can not be revoked once published, so validity periods
should be kept appropriately short. Additionally, the prices are trusted by the proto-
col and the logistics of obtaining the prices is outside of the scope of this audit.

• CIP-113 programmable tokens: This protocol represents one of the first, probably
the very first, production implementations using CIP-113 programmable tokens on
Cardano. The programmable tokens as well as smart wallet code are outside of the
scope of this audit. However, they constitute a significant part of the security of the
protocol.

• Data sanitization: The audit assumes that loan data presented to users through inter-
faces is properly sanitized and users understand what loan terms they are signing
for by accepting the terms. Users should thoroughly examine loan terms and use
trusted interfaces.

• Protocol configuration: There is a protocol-level configuration locked at a single
UTxO that is referenced from all the scripts. There is an admin credential — not

4

necessarily a single key — that has the ultimate power over the protocol as it can up-
date some key properties s.a. the hashes of the respective protocol scripts, leading
to potentially catastrophic consequences if misused.

Audit overview
I started the audit at commit 91c813888e3d4a9cca0aefabd4db6e8464c00aa7 and it
lasted from January 24, 2025 to August 27, 2025. The timeframe included additional fea-
ture additions, significant refactors, and periods during which I awaited the implementa-
tion of fixes by the client. We primarily interacted through Discord and provided feedback
via continuous reporting.

The scope of the audit was limited to the smart contract files only. I did not review any
tests as part of this audit. I performed a design review along with a deep manual audit
of the code and reported findings along with remediation suggestions to the team in a
continuous fashion, allowing time for proper remediation that I reviewed afterwards. See
more about our methodology in Methodology.

The commit aed7d340119c56e8f8f02cbefcc53810ce7df0fc represents the final
version of the code. The status of any issue in this report reflects its status at the most
recent reviewed commit. You can see all the files audited and their hashes in Audited
files. The smart contract language used is Aiken and the contracts are intended to run
on Cardano. To avoid any doubt, I did not audit Aiken itself, the underlying CIP-113 pro-
grammable token implementation or 3rd party oracle providers’ implementations.

Summary of findings
During the audit, I identified and reported 33 critical, 6 major, 8 medium, 18 minor, and
4 informational findings. For details on severity and status classification, please refer to
Classification.

All findings have been resolved except for three minor findings and one informational
finding that were acknowledged as acceptable design decisions:

• FTL3-309: Oracle safe-guards suggestion (Minor, Acknowledged). This finding con-
cerns potential oracle manipulation risks depending on the actual source of prices.
The client acknowledged the concern and plans to use Charli3 and highly liquid as-
sets to mitigate these risks.

• FTL3-314: Installment amounts might not add up to the total principal and interest
(Minor, Acknowledged). Due to rounding in individual installment calculations, the

5

total repaid amount might slightly exceed the theoretical total. This was acknowl-
edged as an acceptable trade-off that can be handled through clear UX communi-
cation.

• FTL3-317: Native tokens can be sent to programmable credential (Minor, Acknowl-
edged). While native tokens might inadvertently be sent to programmable token
credentials causing mild inconvenience, they can be retrieved, so this was acknowl-
edged as acceptable.

• FTL3-401: Equity payment is in the principal asset (Informational, Acknowledged).
The protocol returns liquidation equity in the principal asset rather than the collateral
asset, which differs from most other protocols but was acknowledged as an accept-
able design choice.

The reported findings can be broadly categorized as follows:

• Fundamental protocol breakage: Issues that completely prevented core functional-
ity from operating, including missing token burning logic in minting policies (FTL3-
001, FTL3-003), broken programmable token support due to incorrect credential
lookups (FTL3-009, FTL3-010, FTL3-011), and configuration parsing failures (FTL3-
030, FTL3-031). Many of these issues would have been caught by comprehensive
happy-path testing scenarios.

• Economic attacks and fund theft: Vulnerabilities allowing malicious actors to steal
funds or manipulate the system, including borrowers stealing lender pool funds through
address manipulation (FTL3-002), lenders claiming entire collateral amounts in Dutch
auctions through malicious configuration (FTL3-004, FTL3-005, FTL3-012), programmable
tokens being weaponized to block or ransom protocol operations (FTL3-006), and
incorrect field updates in repayment logic allowing lenders to claim collateral from
borrowers who have actually repaid (FTL3-033).

• Logical vulnerabilities and mathematical errors: Critical flaws in business logic in-
cluding completely reversed liquidation threshold comparisons (FTL3-015), incor-
rect amortization formulas leading to massive overpayments (FTL3-016), flawed re-
casting logic (FTL3-017, FTL3-018), inconsistent interest calculations (FTL3-019, FTL3-
020), and LTV calculations based only on initial principal rather than remaining debt
(FTL3-032).

• Technical implementation issues: Problems with hash function limitations causing
transaction failures (FTL3-008), address validation bypasses allowing bond-based
attacks (FTL3-028, FTL3-029), and programmable token-specific validation bugs (FTL3-
023, FTL3-024, FTL3-025, FTL3-026). Many issues involved indexing problems through-
out the codebase.

6

• Oracle manipulation and cross-protocol attacks: Issues with hardcoded DEX fees
providing incorrect pricing (FTL3-101), double-satisfaction attacks where single pay-
ments fulfill multiple obligations (FTL3-102, FTL3-104), and AMM formula errors in
oracle price calculations (FTL3-013.

• Denial of service and operational issues: Various attack vectors allowing malicious
parties to block normal operations, including transaction manipulation (FTL3-008),
bond-based DoS attacks (FTL3-028), and edge cases in liquidation mechanics (FTL3-
207, FTL3-208).

• Code quality and documentation: Non-critical improvements for clarity and main-
tainability, including naming inconsistencies, unused functions, and documentation
gaps (FTL3-402). The codebase extensively uses fields with dummy values rather
than proper optional types.

Overall, the remediation efforts have dramatically improved FluidTokens Lending v3’s
security posture. The complexity of the protocol, particularly its advanced features like
programmable token support and sophisticated liquidation mechanisms, presented sig-
nificant challenges and thus the overall number of issues. The collaborative audit process
resulted in a more robust and secure lending platform ready for deployment.

7

2 Severity overview

Critical Major Medium Minor Informational

33

6
8

18

4

Findings

FTL3-001 Repayments can not be withdrawn CRITICAL RESOLVED

FTL3-002 Lender pool funds can be stolen CRITICAL RESOLVED

FTL3-003 Collateral can not be withdrawn CRITICAL RESOLVED

FTL3-004
Lender can claim the whole collateral in a
dutch auction before start

CRITICAL RESOLVED

FTL3-005
Lender can claim the whole collateral in an
auction by malicious address

CRITICAL RESOLVED

FTL3-006
Blocking funds and gaining unfair advantage
by adding a programmable token

CRITICAL RESOLVED

ID TITLE SEVERITY STATUS

Continued on next page

8

FTL3-007 Ada collateral is not protected in requests CRITICAL RESOLVED

FTL3-008 Lender can disable repaying and liquidate CRITICAL RESOLVED

FTL3-009
Loan token can not be minted for
programmable token loans

CRITICAL RESOLVED

FTL3-010
Repayment token can not be minted for
programmable token loans

CRITICAL RESOLVED

FTL3-011
Protocol is unfeasible due to usage of
get_outputs_to_smart_credential

CRITICAL RESOLVED

FTL3-012
Dutch auction’s borrower compensation
goes to the lender

CRITICAL RESOLVED

FTL3-013 AMM formulas are incorrect CRITICAL RESOLVED

FTL3-014
Wrong arguments in conversion from Ada to
token

CRITICAL RESOLVED

FTL3-015 Healthy loans can be liquidated CRITICAL RESOLVED

FTL3-016 Amortization formula is wrong CRITICAL RESOLVED

FTL3-017
Recasting does not work well with the
amortization formula

CRITICAL RESOLVED

FTL3-018
Recasting on due loan installments avoids
interest and penalties

CRITICAL RESOLVED

FTL3-019
Inconsistent perpetual loan interest
computation

CRITICAL RESOLVED

FTL3-020
Remaining debt on perpetual loans does not
assume previous payments

CRITICAL RESOLVED

FTL3-021
Dutch auction payments can break due to
checking bond addresses

CRITICAL RESOLVED

FTL3-022 Perpetual loan recasting logic is incorrect CRITICAL RESOLVED

ID TITLE SEVERITY STATUS

Continued on next page

9

FTL3-023
Loan inputs with programmable assets
bypass action validator checks

CRITICAL RESOLVED

FTL3-024
Wrong action credential allows borrowers to
unlock programmable collateral

CRITICAL RESOLVED

FTL3-025
Wrong receipt condition allows blocking
funds with programmable assets

CRITICAL RESOLVED

FTL3-026
Programmable collateral sent to
uncontrollable auction credential is lost

CRITICAL RESOLVED

FTL3-027
Zero liquidation penalty incorrectly skips
equity return to borrower

CRITICAL RESOLVED

FTL3-028
Malicious parties can block transactions by
holding bonds without stake credentials

CRITICAL RESOLVED

FTL3-029
Bond address trusted without bond
presence verification

CRITICAL RESOLVED

FTL3-030 Datums can not be parsed CRITICAL RESOLVED

FTL3-031
Wrong config index extracts incorrect loan
policy id

CRITICAL RESOLVED

FTL3-032
LTV is calculated based on the initial
principal

CRITICAL RESOLVED

FTL3-033
Repayment increments wrong field causing
eventual collateral loss

CRITICAL RESOLVED

FTL3-101
DEX oracle computation uses hardcoded
fees

MAJOR RESOLVED

FTL3-102
Ada in expired requests is vulnerable to
double satisfaction

MAJOR RESOLVED

FTL3-103 Too big loan can liquidate the borrower MAJOR RESOLVED

FTL3-104 Cross-script double satisfaction MAJOR RESOLVED

FTL3-105
Permissioned conditions not enforced for
programmable tokens

MAJOR RESOLVED

ID TITLE SEVERITY STATUS

Continued on next page

10

FTL3-106 Time unit change error disables recasts MAJOR RESOLVED

FTL3-201
Minting multiple repayment tokens is nearly
unfeasible

MEDIUM RESOLVED

FTL3-202
Request can not be cancelled after
expiration by a different party

MEDIUM RESOLVED

FTL3-203 It is possible to lend to an expired request MEDIUM RESOLVED

FTL3-204 Pool might be blocked until recreated MEDIUM RESOLVED

FTL3-205
Too small Ada equity makes liquidation
impossible

MEDIUM RESOLVED

FTL3-206
It might be impossible to add collateral to a
non-specific asset collateral loan

MEDIUM RESOLVED

FTL3-207 No liquidation discount MEDIUM RESOLVED

FTL3-208
User stake credentials to authorize
programmable token transfers

MEDIUM RESOLVED

FTL3-301
Permissioned lending party is chosen by an
index out of context

MINOR RESOLVED

FTL3-302 Oracle’s valid_from is unchecked MINOR RESOLVED

FTL3-303 Dutch auction can be bought before it starts MINOR RESOLVED

FTL3-304
Indexing repayments in repayment minting
policy is troublesome

MINOR RESOLVED

FTL3-305
Burning and minting request and pool
tokens is inconvenient

MINOR RESOLVED

FTL3-306 The principalLTV variable is overused MINOR RESOLVED

FTL3-307 Ada oracle use is inconsistent MINOR RESOLVED

ID TITLE SEVERITY STATUS

Continued on next page

11

FTL3-308
AMM formulas are based on a rational
number that is then rounded

MINOR RESOLVED

FTL3-309 Oracle safe-guards suggestion MINOR ACKNOWLEDGED

FTL3-310
Equity computation charges conversion fees
to the lender

MINOR RESOLVED

FTL3-311
Pool KYC token signature can be reused to
borrow more

MINOR RESOLVED

FTL3-312 Unlimited recasts do not work MINOR RESOLVED

FTL3-313 Borrowers can avoid late repayment penalty MINOR RESOLVED

FTL3-314
Installment amounts might not add up to the
total principal and interest

MINOR ACKNOWLEDGED

FTL3-315 Total installments field for perpetual loans MINOR RESOLVED

FTL3-316
Hash function mismatch in oracle key
verification

MINOR RESOLVED

FTL3-317
Native tokens can be sent to programmable
credential

MINOR ACKNOWLEDGED

FTL3-318
Big bond reference inputs can cause DoS via
transaction limits

MINOR RESOLVED

FTL3-401
Dropping a byte of a hash result is
discouraged

INFORMATIONAL RESOLVED

FTL3-402 Request id and pool id might be identical INFORMATIONAL RESOLVED

FTL3-403 Equity payment is in the principal asset INFORMATIONAL ACKNOWLEDGED

FTL3-404
Code quality, naming, and documentation
issues

INFORMATIONAL RESOLVED

ID TITLE SEVERITY STATUS

12

FTL3-001 Repayments can not be withdrawn

Category Vulnerable commit Severity Status

Logical Issue 88d07d5a7c CRITICAL RESOLVED

Description

A repayment token needs to be burned in order to withdraw funds from a repayment.
However, the minting policy does not allow any burning to happen. That means that the
validator would never succeed and thus no repayment can ever be withdrawn. The logic
was intended to be present as evidenced by the minting function’s comment. However,
it’s not there at the moment.

Recommendation

I suggest carefully adding in the burning mechanism.

Resolution

The issue was fixed in the commit 3565170f94 .

13

FTL3-002 Lender pool funds can be stolen

Category Vulnerable commit Severity Status

Logical Issue 88d07d5a7c CRITICAL RESOLVED

Description

If a borrower borrows from a lender pool an amount that is less than the total amount
that is present there, he is supposed to return the remaining funds in a recreated lender
pool. In the validation logic checking this, the lender pool’s address is unchecked with a
comment explaining why it’s okay to not check it there: “outputs have been already filtered
at the beginning”. In other cases where this comment is present, that is true. However, this
specific recreated pool output is not filtered previously. Its address can really be arbitrary.

If the borrower is malicious, he may recreate the lender pool with all the remaining
funds on an address he controls, withdrawing it all in a followup transaction.

Recommendation

I suggest checking the continuing pool output’s address in the validate_eventual_-

output_to_pool function.

Resolution

The issue was fixed by the commit e20d6c5ddf .

14

FTL3-003 Collateral can not be withdrawn

Category Vulnerable commit Severity Status

Logical Issue 88d07d5a7c CRITICAL RESOLVED

Description

Similar to the issue FTL3-001, the loan token’s minting policy does not allow for the token
burning. That means that all final branches of loan repayment, those that check that the
loan token is burned, are unfeasible. As a result, no collateral can be withdrawn as it
unlocks only once the loan is repaid.

Recommendation

I suggest carefully adding in the burning mechanism.

Resolution

The issue was fixed in the commit 3565170f94 .

15

FTL3-004 Lender can claim the whole coll-
ateral in a dutch auction before start

Category Vulnerable commit Severity Status

Design Issue 610e4c46cd CRITICAL RESOLVED

Description

In a loan with a dutch auction liquidation type, the collateral is auctioned at a premium
that is slowly decreasing. If somebody pays for the collateral more than the outstanding
debt, it is checked that the rest goes to the borrower — the party being liquidated.

However, there is a Cancel mechanism in place which allows the lender to cancel
the auction in extraordinary circumstances s.a. the decreasing price dropping too low.
Moreover, the lender can cancel the auction before it starts as well. As the start date is
always set to the future, the transaction’s validity upper bound timestamp, there is some
time for him to fit the cancel transaction in. There is no check on the collateral, he can just
keep it all. Note that the collateral almost always is of a bigger value than the debt, even
when it is being liquidated.

Recommendation

I suggest removing the option of cancelling an auction before it starts. Either way, as can
be seen in the issue FTL3-303, the auction actually starts right away.

Resolution

The issue was fixed in the commit 226e399697 . The option to cancel the auction before
it starts was removed for dutch auctions started by this contract. It is retained for auctions
where no borrower is listed.

16

FTL3-005 Lender can claim the whole coll-
ateral in an auction by malicious address

Category Vulnerable commit Severity Status

Logical Issue c49d69ef8c CRITICAL RESOLVED

Description

When a borrower is late with his repayment and the liquidation mode is set to the dutch
auction type, the lender can create the auction. In that transaction, he sets his address in
the dutch auction’s datum. Whoever buys the collateral, he needs to pay the lender his
outstanding debt. This address is not checked by any validation.

There are two attacks on this. Both cause the breaking of the validation of the dutch
auction when somebody attempts to buy the collateral. The only way that the auction
could be resolved, is for the lender to wait until the price decreases to the minimum thresh-
old and then cancel the auction and simply claim the whole collateral. As the collateral is
of a higher value than the debt, he has an incentive to do this. The two ways to achieve
this:

1. Lender supplies an address where either the payment credential or the stake creden-
tial is of the wrong length. Aiken (in contrast to Plutarch) does not protect against this.
It is impossible to create a UTxO at an address of an invalid length, so the validation
would never see an output to the ownerAddress.

2. Lender sets the address’ stake credential to a pointer credential. This old way of ref-
erencing credentials is not supported in the correctAmountSentToUser function
and errors out straight away. The function is used only when somebody else buys
the collateral; the lender can still wait and cancel the auction. Note: Even if pointer
addresses were supported, there is a choice of pointer numbers that would break it
down again ,.

Recommendation

I suggest validating the ownerAddress when the dutch auction is being created. Both
the payment and the stake credentials need to be of the correct length. I also suggest
requiring non-pointer stake credentials.

17

Resolution

The issue was fixed in the commit 775127a44e by setting the owner address as the
address where the lender token is at the time. Beware, that this issue is not fixed in any
way for dutch auctions not originating from this protocol.

18

FTL3-006 Blocking funds and gaining unfair
advantage by adding a programmable token

Category Vulnerable commit Severity Status

Design Issue dc3f840801 CRITICAL RESOLVED

Description

The scripts support CIP-113 programmable tokens. Any project scripts could be located
at the smart wallet payment credential which, among other things, checks that all tokens
contained within the UTxO are either not programmable or their programmable logic is
run in the transaction. This exposes the protocol to a novel attack vector. The core of
the attack is that there will be a new malicious programmable token added to a protocol
UTxO at an otherwise normal interaction. Let’s explore a few examples:

1. When a lender liquidates a loan by creating a dutch auction, he can add a mali-
cious programmable token to the newly created dutch auction. The token’s pro-
grammable logic would allow only transactions signed by his key. That means that
he can claim the whole collateral for no price as nobody else would be able to buy
the collateral from the auction.

2. When a borrower borrows from a pool, she can add a programmable token to the
newly created loan UTxO. She can block the UTxO, but that wouldn’t help her. How-
ever, she can, for example, also allow only actions that are not liquidations of her
loan and thus protect her collateral and e.g. be able to keep the loan forever.

3. When borrowing from a pool, a malicious borrower can block the rest of the pool by
adding a programmable token that never validates. Alternatively, they can ransom
the pool owner by e.g. validating if and only if they send a big portion of the tokens
to their controlled address.

4. Newly created repayment can be blocked or ransomed if Ada is the lent asset. Equity
UTxOs can be blocked or ransomed as well.

As can be seen in the above examples, with the programmable token support, it is no
longer enough to check the DoS protection by limiting the number of tokens. It needs
to be checked that no additional programmable token is added to script outputs or
outputs belonging to someone else.

19

Recommendation

I suggest validating that exactly the expected number of tokens is present in every UTxO
instead of checking the maximum number of different tokens. This needs to be updated
in all the places in the code that check outputs.

Resolution

The issue was partially fixed in the commit 775127a44e and later fully fixed in the commit
61fb5e21d7 .

20

FTL3-007 Ada collateral is not protected in
requests

Category Vulnerable commit Severity Status

Logical Issue c9ad2a4960 CRITICAL RESOLVED

Description

Imagine a borrower creating a request and locking their Ada collateral inside. They want
to borrow some other token. When a lender comes, they need to pay the principal to the
borrower but they can claim the whole collateral for themselves as the collateralUn-

changed condition in the validate_output_to_loan function does not check Ada val-
ues at all. As the collateral is bigger than the loan in value, the borrower immediately loses
on this.

Recommendation

I suggest checking that at least that amount of Ada is contained within the loan output.

Resolution

The issue was fixed in the commit 12dcddbc44 .

21

FTL3-008 Lender can disable repaying and
liquidate

Category Vulnerable commit Severity Status

Code Issue c9ad2a4960 CRITICAL RESOLVED

Description

This is a technical vulnerability that exploits the fact that the hash_output_ref function
errors out if the input’s transaction index it tries to hash exceeds 255. All loan repayments
use this function to determine the repayment id. As such, if a loan input can not be hashed,
it can not be repaid.

To achieve this, let’s lend to a request in such a way that the resulting loan output would
be on an index > 255. It is enough to create 255 dummy output UTxOs when lending to a
request and putting the newly created loan on the 256th position.

A borrower would be unable to repay it; the transactions would start failing. He is not
entirely hopeless in all situations, though. It is enough for him to add collateral to his
loan, thus setting the new loan UTxO’s transaction index to a lower value. He can repay
then. However, it is not intuitive to figure this out and he might have get liquidated in the
meantime. What’s more, it is not always easy or it’s straight impossible to get more of
some collateral types such as NFTs.

Finally, since the borrower is unable to repay, the lender can liquidate him and take the
collateral if the liquidation policy is set right — neither partial liquidations can take place
as a repayment is created in those cases. As always, collateral’s more valueable than the
loan so there’s an incentive to do this.

Recommendation

I suggest making sure that no loan is ever put on an index bigger than 255.

Resolution

The issue was fixed by the commit e20d6c5ddf . The hash_output_ref function was
modified to handle the case where the index is bigger than 255 properly.

22

FTL3-009 Loan token can not be minted for
programmable token loans

Category Vulnerable commit Severity Status

Code Issue c9ad2a4960 CRITICAL RESOLVED

Description

Due to a similar technical issue as described in the issue FTL3-105, the loan token minting
policy can not find and thus validate minting of tokens resulting from request and pool
inputs that are on the programmable token script credential. It’s because it expects the
staking credential to reference itself (the loan validator hash) instead of the request and
pool validators respectively.

That means that the token can not be created, thus no valid loan can be created for
requests or pools containing programmable tokens.

Recommendation

I recommend updating the arguments in theget_inputs_from_smart_credential func-
tion call in the loan minting policy such that inputs with the programmable token payment
credential and request/pool staking credential are found by the call.

Resolution

The issue was fixed in the commit 12dcddbc44 .

23

FTL3-010 Repayment token can not be minted
for programmable token loans

Category Vulnerable commit Severity Status

Code Issue c9ad2a4960 CRITICAL RESOLVED

Description

Due to a similar technical issue as described in the issues FTL3-105 and FTL3-009, the
repayment token minting policy can not find and thus validate minting of tokens resulting
from loan inputs that are on the programmable token script credential — e.g. all those
whose collateral is programmable. It’s because the policy expects the staking credential
to reference itself (the repayment validator hash) instead of the loan validator.

That means that the token can not be created, thus no valid repayment can be created.
That means that a borrower might not have the opportunity to repay his loan and get
liquidated.

Recommendation

I recommend updating the arguments in theget_inputs_from_smart_credential func-
tion call in the repayment minting policy such that loan inputs with the programmable
token payment credential and loan staking credential are found by the call.

Resolution

The issue was fixed in the commit 12dcddbc44 .

24

FTL3-011 Protocol is unfeasible due to us-
age ofget_outputs_to_smart_credential

Category Vulnerable commit Severity Status

Code Issue c9ad2a4960 CRITICAL RESOLVED

Description

This issue is about a similar technical issue as described in the issues FTL3-105, FTL3-009
and FTL3-010. The function get_outputs_to_smart_credential is used to find an out-
put on either a traditional payment credential or a programmable token credential with a
particular owner referred by the staking credential. The latter case does not work properly
in some cases as the staking credential that is looked for is supplied incorrectly.

There are three cases of incorrect parameters supplied to this function resulting in the
unfeasibility of the protocol in each case:

• When a lender lends to a request, the newly created loan output can be created on
the programmable credential with the loan staking credential. However, the validator
looks for the request staking credential and thus can’t find the loan output. However,
no loan token ever gets to a non-loan payment credential and so requests can not
be lent to.

• Analogous to the previous point, when it is borrowed from a pool, the loan output’s
not looked for correctly. That means that it can not be borrowed from a pool.

• When a loan is being liquidated and a dutch auction is created, the dutch auction
output is not looked for correctly. The staking credential is expected to be that of
the loan credential. This means that the collateral can not go to the auction. It can
be forever locked inside an unspendable, invalid loan output.

All of the above examples apply only if there are programmable tokens involved.

Recommendation

I recommend updating the arguments in theget_outputs_to_smart_credential func-
tion call in the mentioned cases, focusing on the withdrawScriptCredential argu-
ment.

25

Resolution

The issue was fixed in the commit 12dcddbc44 .

26

FTL3-012 Dutch auction’s borrower compen-
sation goes to the lender

Category Vulnerable commit Severity Status

Code Issue c9ad2a4960 CRITICAL RESOLVED

Description

In case the dutch auction is successful and the raised value exceeds the remaining debt,
the rest is paid to the borrower address specified in the dutch auction’s datum. However,
the value is not set correctly in the loan validator. It is set to the lender address instead as
the lenderBondInput is supplied to the validate_output_to_dutch_auction func-
tion’s borrowerBondInput parameter. As a result, the borrower always loses the whole
collateral’s worth of value.

Recommendation

I recommend correcting the variable supplied to the borrowerBondInput parameter to
refer to the actual borrower bond input. A reference input is probably more suitable here.
Also, I’d recommend highlighting to the users that they might receive liquidation compen-
sation on the address where they hold the bond — to make sure that their compensation
is not sent to an unspendable script address.

Resolution

The issue was fixed in the commit 775127a44e .

27

FTL3-013 AMM formulas are incorrect

Category Vulnerable commit Severity Status

Logical Issue c9ad2a4960 CRITICAL RESOLVED

Description

One of the oracle types is an oracle that returns the amount of tokens A and tokens B in-
side a constant-product AMM liquidity pool. Based on this, it is estimated what the price
of converting one into the other would be, taking into account protocol fees as well as
slippage. However, these formulas are wrong. As data from oracles as well as their inter-
pretation are insanely crucial for the protocol, everything can go wrong with this.

Recommendation

As the simplest suggestion, I suggest re-doing the way AMM logic functions are written;
writing them in a similar way to how the DEXes verify the swap values, ideally sticking as
close to the same DEX code as possible.

They also do not compute all the variables on-chain. Sometimes, it is easier to sup-
ply additional information via redeemers instead of computing multiple inequalities as
would be the case in the token_b_needed_to_purchase_token_a_in_AMM_pool func-
tion. Say that the token_b_needed is known and supplied via a redeemer and then it is
just verified. Inequalities turned into simple formulas.

Furthermore, I’d recommend choosing a DEX that is planned to be sourced for values
and naming the variables exactly the same. It helps to avoid mistakes. Additionally, I’d
suggest covering this logic with numerous tests that directly test the logic against the
logic from the chosen DEX. If numerous are planned, test against them all. As an example,
you can refer to this WingRiders computation¹. Note the rounding there as well.

Finally, I suggest sanitizing the function arguments, including but not limited to check-
ing that the numbers are positive, the pool has enough reserves for the swap; and in case
of using any inequalities, checking that they were not multiplied by a negative number
(requiring the inequality sign change).

¹https://github.com/WingRiders/dex-v2-contracts/blob/master/src/DEX/Pool/ConstantProduct.hs#
L365

28

https://github.com/WingRiders/dex-v2-contracts/blob/master/src/DEX/Pool/ConstantProduct.hs#L365
https://github.com/WingRiders/dex-v2-contracts/blob/master/src/DEX/Pool/ConstantProduct.hs#L365

Resolution

The issue was fixed by the commit 4b1ee3fe68 . The Pooled oracle data type was
phased out and the mentioned functions were removed as a result. DEX prices can be
still sourced off-chain and feeded via an Aggregated oracle type. I’d like to stress that if
that is done, the computation needs to be done off-chain. The on-chain trusts it.

The Pooled oracle type is still present in the codebase; however, the validation fails if
used.

29

FTL3-014 Wrong arguments in conversion
from Ada to token

Category Vulnerable commit Severity Status

Logical Issue c9ad2a4960 CRITICAL RESOLVED

Description

Theget_lovelace_amount_in_token_currency function converts a fixed lovelace amount
into the token currency. For that, it uses the token_b_needed_to_purchase_token_-

a_in_AMM_pool function which is supposed to compute the token B required to pur-
chase wanted_token_a_amount of token A according to its description. Wanted token
A amount is set to the fixed lovelace amount. However, as mentioned in the Pooled ora-
cle data type, lovelace is always the token B. Hence, it makes a mistake of supplying B

amounts to A amounts and vice versa. That results in invalid numbers in protocol founda-
tions.

Recommendation

As this is the only usage of the function, I suggest re-labelling token A to token B and
vice versa inside the token_b_needed_to_purchase_token_a_in_AMM_pool function,
including in its name.

Additionally, I’d add a comment to the function explaining that it charges fees related to
the conversion, if any, to the opposite conversion. This can be explained better by naming
as well, e.g. by naming the function similar to how_much_tokens_convert_to_fixed_-

lovelace. Its call makes sense only in hypothetical scenarios such as determining the
collateral value in such a way that the collateral value converted would yield at least this
amount of lovelace, etc. It is not trivial to see this from the function alone and it is important
to clarify.

Resolution

The issue was fixed by the commit 4b1ee3fe68 . The Pooled oracle data type was
phased out and the mentioned functions were removed as a result.

30

FTL3-015 Healthy loans can be liquidated

Category Vulnerable commit Severity Status

Logical Issue c9ad2a4960 CRITICAL RESOLVED

Description

This issue is about liquidations using loan-to-value (LTV) comparisons. Loan to value num-
ber in overcollateralized loans is a number between 0 and 1. The bigger the number, the
bigger the loan compared to the collateral value and thus the more dangerous or un-
healthy the loan is. The liquidation LTV threshold is noted in the loan datum.

The can_liquidate function compares the current LTV against the liquidation thresh-
old and decides whether the loan can be liquidated or not. However, the logic is reversed.
It says that liquidation can happen if the liquidation threshold is greater than the current
LTV. In other words, if the threshold is more dangerous than the current ratio. It allows
liquidation for healthy loans only.

Recommendation

I suggest reversing the logic in the can_liquidate function, so that liquidations are al-
lowed for loans where the current LTV is greater than or equal to the liquidation threshold.

Resolution

The issue was fixed in the commit 12dcddbc44 . Loans can now be liquidated only when
the current LTV is greater than the liquidation threshold. Equality is not enough, though.

31

FTL3-016 Amortization formula is wrong

Category Vulnerable commit Severity Status

Logical Issue c9ad2a4960 CRITICAL RESOLVED

Description

When a loan is taken with the InterestOnRemainingPrincipal repayment method, the
amortization formula is used to determine the installment amounts. However, it is incor-
rect in the code. Instead of:

principal × i× (1 + i)n

(1 + i)n − 1

it uses
(principal × i× (1 + i))n

(1 + i)n − 1

. The latter is significantly bigger and would result in massive overpaying of the loan or,
more likely, a default and a liquidation of the whole collateral.

Recommendation

I suggest fixing the formula as described.

Resolution

The issue was fixed in the commit 12dcddbc44 .

32

FTL3-017 Recasting does not work well with
the amortization formula

Category Vulnerable commit Severity Status

Design Issue c9ad2a4960 CRITICAL RESOLVED

Description

A recast can happen any time during a loan and any amount can be recast. The recast
amount is directly subtracted from the initial principal. Based on this new principal, a new
fixed installment is computed; not changing the rate and repaid/due installment amounts.

However, that ignores the fact that if this recast happens mid-term, a portion of the
initial principal has already been repaid in those repayments.

Furthermore, the term is not updated. If the recast happens after the 3rd out of 12
installments, the formulae expect that the new outstanding principal, however computed,
should be repaid after 12 installments. However, that’s not true. Only 9 installments are
pending.

Recommendation

I suggest modifying the recasting logic of the InterestOnRemainingPrincipal repay-
ment method. Each repayment includes both a part of principal and interest. When a
recast happens mid-term, it is important to update both the term and the new principal.
The new principal is the outstanding principal minus the recast amount. The outstanding
principal after k repayments can be computed iteratively or there’s a known closed for-
mula as well. The term needs to be updated such that the per-installment rate remains
the same, but the total number of installments used in the fixed payment amortization
formula n is reduced to the number of outstanding repayments.

Resolution

The issue was fixed by the commit e4f6501c15 .

33

FTL3-018 Recasting on due loan installments
avoids interest and penalties

Category Vulnerable commit Severity Status

Design Issue c9ad2a4960 CRITICAL RESOLVED

Description

A recast can happen any time during a loan and any amount can be recast. It does not
check whether installments that are already due are repaid, though. That means, taken
to the extreme, that the principal can even be fully repaid only in the end of the loan with
no installments paid up to that point; and the loan could be closed as fully repaid that
way. Technically, this is possible as computing the remaining debt after the recast while
supplying 0 principal yields 0.

Recommendation

I suggest ensuring that all due installments and one more are repaid before allowing a
recast. I suggest one more simply such that the term is not changed in the end of an
installment period when there should be a bigger pending interest accumulated up to
that point.

Resolution

The issue was fixed by the commit 8d0e95f6bc .

34

FTL3-019 Inconsistent perpetual loan inter-
est computation

Category Vulnerable commit Severity Status

Logical Issue c9ad2a4960 CRITICAL RESOLVED

Description

There are two different calculations for the perpetual loan’s current interest rate. In get_-

remaining_debt, the linear increase is multiplied by the base rate (i.e. rate + (rate ×
increase)), whereas in get_installment_amount, the increase is simply added to the
rate (i.e. rate+ increase). This leads to mismatched interest values and thus total values in
two critical functions that need to match.

Recommendation

I suggest using one consistent interpretation of the rate increase. If the design intends a
percentage-based scaling, apply rate + (rate × increase) everywhere. If it’s a flat additive
factor, use rate+ increase throughout.

Resolution

The issue was fixed in the commit 3bb4c59d7f .

35

FTL3-020 Remaining debt on perpetual loans
does not assume previous payments

Category Vulnerable commit Severity Status

Logical Issue c9ad2a4960 CRITICAL RESOLVED

Description

In the perpetual loan scenario, the get_remaining_debt function always calculates the
total debt, principal plus total interest, as if no interest payments were ever made. It simply
uses the full timespan from the lend date; ignoring that periodic installments may have al-
ready covered some or all of the accrued interest. As a result, borrowers could be double-
charged for interest they’ve already paid.

Recommendation

I suggest accruing interest only from the last repayment forward. This ensures the final
payoff amount truly reflects unpaid interest rather than recalculating from the initial lend
date each time.

Resolution

The issue was fixed by the commit e20d6c5ddf . The perpetual loan’s logic has changed
a lot since the issue was reported. But the calculation of the remaining debt takes into
account the previous payments — even though the logic itself is not 100% correct at this
commit yet.

36

FTL3-021 Dutch auction payments can break
due to checking bond addresses

Category Vulnerable commit Severity Status

Logical Issue aef2d5dd0a CRITICAL RESOLVED

Description

After some refactors, the loan validator was updated to take the address of the borrower
bond output as the borrower address, and the address where the lender bond is as the
lender address. Those are then used in the configuration of the dutch auction. There, they
are used in the correctAmountSentToUser validation function.

This issue is about what can go wrong with this approach inside the function:

• First, as some other issues mentioned, it validates if and only if an address got from
that contains an inline staking credential. If the lender does not keep his bond at
an address with such a staking credential, s.a. if he has no staking credential there
or uses a pointer staking credential, he can DoS the auction and keep the whole
liquidation even if partial liquidations are enabled.

• Then, the validation can validate if the collateral is sent either to the address speci-
fied or to the programmable account credential with the user staking credential. In
the latter case, there can be an unspendable programmable token attached by a
malicious party, effectively blocking the follow-up spend of the UTxO.

• Finally, a user probably doesn’t hold the bond on the programming tokens’ creden-
tial. That means that the staking credential of that address is likely just a staking
credential. Allowing a repayment address of the programmable credential and that
staking credential might not be handled well by even the wallets supporting the CIP-
113.

Recommendation

I recommend updating the dutch auction’s correctAmountSentToUser to:

• Distinguish between a userAddress that is on the programmable credential and
the normal pubkey address.

• Use the expected programmable credential’s staking key (payment key in case of
normal user address).

37

• Do not allow the lender to DoS the process by making the validation fail on a non-
present or a pointer staking credential.

• Similar to the issue FTL3-006, tightly control the amount of tokens in the output —
especially in the programmable collateral scenario.

Furthermore, explain to users that the address where they hold their bonds can be
used in the way mentioned here. Among other things, they should not put the bonds on
a script payment credential because they might not be able to unlock the collateral if it is
a programmable token and the script is used as the staking credential. Also, the address
needs to be able to receive tokens.

Resolution

The issue was fixed by the commit 4ff2165210 .

38

FTL3-022 Perpetual loan recasting logic is
incorrect

Category Vulnerable commit Severity Status

Design Issue aef2d5dd0a CRITICAL RESOLVED

Description

The perpetual loan recasting logic has several flaws that lead to incorrect calculations and
potential loss of funds:

• It reduces the principal amount immediately by subtracting the principalPaid

from datum.principalAmount without first ensuring all accrued interest has been
paid.

• The remaining debt calculation is based on the reduced principal, which means inter-
est accrued on the full principal amount up to that point may not be fully accounted
for.

• The is_recasting_permitted check only verifies that there is no due installment,
but that doesn’t guarantee all accrued interest has been settled as the installments
do not cover the whole interest amounts.

Recommendation

I suggest restructuring the recasting logic to:

• First calculate the total current debt including all accrued interest based on the orig-
inal principal amount.

• Verify that the principalPaid amount covers both the whole unpaid accrued inter-
est up to the current time and the desired principal reduction amount.

• Only after confirming all interest is paid, allow the principal reduction by the appro-
priate principal portion of the recast payment.

Resolution

The issue was fixed by the commit c7b9d1cd2d .

39

FTL3-023 Loan inputs with programmable
assets bypass action validator checks

Category Vulnerable commit Severity Status

Code Issue db29a2fe1d CRITICAL RESOLVED

Description

All four loan action validators incorrectly filter loan inputs when using programmable as-
sets. In all these validators, the get_inputs_from_smart_credential function is called
with the wrong withdraw script credential set to the action validator’s credential, but it has
to be set to the loan script credential in order to find loan inputs on programmable cre-
dentials.

This causes loan UTxOs containing programmable collateral to be missed by the action
validators, allowing them to be spent without any validation. Attackers can freely unlock
loan UTxOs with programmable collateral, bypassing liquidation conditions, repayment
requirements, and other loan constraints.

Recommendation

Change the credential variable to loan script credential inside the get_inputs_from_-
smart_credential calls in all four loan action withdraw validators.

Resolution

The issue was fixed by the commit 4ff2165210 .

40

FTL3-024 Wrong action credential allows bor-
rowers to unlock programmable collateral

Category Vulnerable commit Severity Status

Code Issue db29a2fe1d CRITICAL RESOLVED

Description

Three of the four loan action validators (loan_change_collateral_action.ak, loan_-
recast_action.ak, loan_repay_action.ak) incorrectly filter ongoing loan outputs when
using programmable assets. In these validators, the get_outputs_to_smart_creden-

tial function is called with the wrong withdraw script credential.
The credential parameter is the action validator’s credential, but it should be set to

the loan credential. This allows borrowers to send continuing loan outputs to addresses
controlled by the action validator’s credential instead of the proper loan spend script cre-
dential. This in turn, after fixing the previous issue FTL3-023, makes them invisible to the
validator and so they become easily withdrawable since they’re not properly locked to
the loan spend script. That effectively allows borrowers to unlock their collateral without
any constraints.

Recommendation

Change the credential parameter passed to check_repay and similar functions to use
the loan script credential.

Resolution

The issue was fixed by the commit 4ff2165210 .

41

FTL3-025 Wrong receipt condition allows block-
ing funds with programmable assets

Category Vulnerable commit Severity Status

Logical Issue db29a2fe1d CRITICAL RESOLVED

Description

The receipt token validation logic is implemented incorrectly. The number of tokens al-
lowed inside a UTxO is decided based on a receiptCondition logic which is set as
follows:

1 let receiptCondition =

2 repaymentReceipts == False || quantity_of(

3 equityOutput.value,

4 repaymentPolicyId,

5 utils.hash_output_ref(loanInputOutputReference),

6) == 1

When repaymentReceipts == False (repayment receipt token not required), the
condition is always True regardless of whether the receipt token is present in the output.
Based on that, the code potentially allows one more arbitrary token to be added there.

That allows attackers to add a programmable token there that never validates, effec-
tively blocking the UTxO. Both equity and repayment outputs can be blocked or ransomed
this way.

Recommendation

Fix the receiptAssetCount logic to allow the correct receipt token, but still prevent other
tokens from being added to the output.

Resolution

The issue was fixed by the commit 4ff2165210 .

42

FTL3-026 Programmable collateral sent to
uncontrollable auction credential is lost

Category Vulnerable commit Severity Status

Logical Issue db29a2fe1d CRITICAL RESOLVED

Description

The is_output_to_smart_credential function was incorrectly updated when fixing
another issue. It now doesn’t properly support programmable assets controlled by scripts.
It is used once that way in the codebase, when creating a dutch auction output.

1 pub fn is_output_to_smart_credential(

2 output: Output,

3 spendCredential: Credential,

4 stakeCredential: Option<StakeCredential>,

5 smartTokensSpendScriptHash: ByteArray,

6) {

7 or {

8 //Native tokens

9 and {

10 output.address.payment_credential == spendCredential,

11 output.address.stake_credential == stakeCredential,

12 },

13 //Smart tokens or native tokens accidentally sent to the smart

account

14 and {

15 output.address.payment_credential == Script(

smartTokensSpendScriptHash),

16 output.address.stake_credential == Some(Inline(

spendCredential)),

17 },

18 }

19 }

For programmable assets, this function forces the stake credential to be
Some(Inline(spendCredential)). When used in dutch auction creation withdutchAuc-

43

tionSpendScriptHash as the spendCredential, programmable collateral gets sent to
the programmable payment credential and this staking credential. However, dutchAuc-
tionSpendScriptHash is ageneral_spend script that is unable to control programmable
tokens’ transfer, making these funds — auctioned collateral — permanently lost.

This function works for user wallets and that’s why it was updated, but fails for script-
controlled addresses where the spend credential and the credential able to control pro-
grammable token transfers are different from each other.

Recommendation

Revert the function’s definition to properly handle script-controlled programmable assets
as well, ensuring the stake credential can actually control the programmable tokens when
scripts are involved.

Resolution

The issue was fixed by the commit 4ff2165210 .

44

FTL3-027 Zero liquidation penalty incorrectly
skips equity return to borrower

Category Vulnerable commit Severity Status

Logical Issue db29a2fe1d CRITICAL RESOLVED

Description

A recent change modified a partial liquidation condition in the loan_claim_action.ak

file on line #247 from < 0 to <= 0, causing equity to be wrongfully withheld from borrow-
ers in case the liquidation discount, the partialLiquidationPenaltyPerMille vari-
able, is set to exactly zero meaning no liquidation discount.

If that happens, the condition becomes True and no equity output is required to be
created for the borrower upon liquidation. However, even with zero liquidation penalty, if
there is positive equity in partial liquidation scenario (collateral value exceeds remaining
debt), the borrower should still receive that equity back.

Recommendation

Revert the condition back to the strict inequality in the loan_claim_action.ak file:

1 or {

2 partialLiquidationPenaltyPerMille < 0, // Revert to < 0

3 equity <= 0,

4 {

5 // ... equity creation logic

6 }

7 }

Resolution

The issue was fixed by the commit 4ff2165210 .

45

FTL3-028 Malicious parties can block trans-
actions by holding bonds without stake cre-
dentials

Category Vulnerable commit Severity Status

Design Issue db29a2fe1d CRITICAL RESOLVED

Description

Multiple validators now expect bond addresses to have inline stake credentials, creating
denial-of-service attack vectors where malicious parties can block critical loan operations
simply by placing their bond on an address with no staking credential, with a pointer
staking credential, etc.

1 expect Some(Inline(lenderBondStakeCredential)) =

2 lenderBondAddress.stake_credential

Attack Vectors:

• Lender blocks repayments — Lender can block repayments as the check is present
in the check_repay function. By making repayment transactions fail, he forces the
loan to become late and enables liquidation.

• Lender blocks recasts — Same mechanism prevents borrowers from recasting loans
(loan_recast_action.ak line #99).

• Borrower blocks liquidations — Borrowers can prevent liquidations by putting bonds
on addresses without inline stake credentials (loan_claim_action.ak line #226).

Recommendation

Never enforce something about the type of an address of a different party. Replace the
logic such that it validates gracefully for any type of address the bond is located on.

Resolution

The issue was fixed by the commit c23560b30f .

46

FTL3-029 Bond address trusted without bond
presence verification

Category Vulnerable commit Severity Status

Logical Issue db29a2fe1d CRITICAL RESOLVED

Description

There was a refactor whereas some outputs could be created directly at a user’s address.
To determine the address, a reference input is included in the transaction that contains the
party’s bond token. However, the bond addresses are actually extracted from reference
inputs without verifying that the corresponding bond NFTs are actually present in those
reference inputs! This allows attackers to redirect payments to addresses they control.

Attack Scenarios:

• Borrower steals repayments — Borrower points lenderBondRefInputIndex to a
reference input with their own address, receiving all loan repayments instead of the
lender. The presence of lender bond token in that reference input is not verified.

• Borrower steals recasts — Same mechanism allows borrowers to redirect recast
principal payments to themselves.

• Lender steals equity — Lender points borrowerBondRefInputIndex to their own
address, receiving borrower equity from partial liquidations.

The validators only verify bond NFT presence in outputs, not in the reference inputs
used for address extraction.

Recommendation

Add the necessary bond NFT presence check whenever a bond input is referenced to
extract an address to send some value to.

Resolution

The issue was fixed by the commit 4ff2165210 .

47

FTL3-030 Datums can not be parsed

Category Vulnerable commit Severity Status

Logical Issue 10a0a94ee8 CRITICAL RESOLVED

Description

Recent changes to the code introduced a different way of parsing datums for perfor-
mance reasons, using builtin.un_list_data on the datum directly. However, if the
datum type is not changed to list only, but it still conforms to a datum type structure s.a.
ConfigDatum, then that can not be parsed as a list. This has been demonstrated by an
aiken test.

The implications of this are protocol-wide unfeasibility. For example, the config val-
idators make sure the config datum conforms to the mentioned ConfigDatum, but other
validators try to parse it as the list, which always fails.

Recommendation

Make sure the feasibility of the data parsing is not impacted — there is a constructor at
the top level, so either un_constr_data or unconstr_fields usage is needed. As there
is a big loss of type safety with the taken approach, try to abstract the parsing/unparsing
functionality into a single file, avoiding copy-paste indexing-like errors across the valida-
tors and covering this file with many tests, so changes s.a. moving a variable’s position
inside a data type are easily caught by the tests.

Resolution

The issue was fixed by the commit c23560b30f .

48

FTL3-031 Wrong config index extracts incor-
rect loan policy id

Category Vulnerable commit Severity Status

Logical Issue c23560b30f CRITICAL RESOLVED

Description

All loan validators extracted loanPolicyId from the wrong config index, using index 2
instead of the correct index 6:

1 let loanPolicyId = builtin.un_b_data(utils.safe_list_at(config, 2))

This affects 7 validators: all 4 loan action validators, as well as thepool.ak, request.ak,
and repayment.ak validators. Instead of retrieving the actual loan policy id, the code re-
trieves the pool policy id.

As a result, if loan UTxOs contain programmable tokens, the loan action validators do
not find proper loan inputs (they are looking for pool inputs instead) and so they do not
perform any validation, allowing for full value extraction by anyone.

Recommendation

Update all instances to use the correct config index 6 for loanPolicyId extraction from
the config datum.

Resolution

The issue was fixed by the commit e4f6501c15 .

49

FTL3-032 LTV is calculated based on the ini-
tial principal

Category Vulnerable commit Severity Status

Design Issue c7b9d1cd2d CRITICAL RESOLVED

Description

The can_liquidate function computes the loan-to-value (LTV) ratio using only the ini-
tial principal and the collateral value. This approach does not account for accumulated
interest over time or any principal that has already been repaid, and thus bases the LTV
solely on the original principal versus the current collateral value.

This logic is used to determine eligibility for liquidation and to decide whether collateral
can be reduced to a desired amount. As a result, discrepancies can lead to undercollat-
eralized loans that cannot be liquidated, or to premature liquidations if the principal is
almost repaid.

Recommendation

Use the entire remaining debt (including interest and minus any repaid principal) as the
“loan” part of the LTV calculation in the can_liquidate function.

Resolution

The issue was fixed by the commit 6c94d00585 .

50

FTL3-033 Repayment increments wrong field
causing eventual collateral loss

Category Vulnerable commit Severity Status

Code Issue c7b9d1cd2d CRITICAL RESOLVED

Description

Thevalidate_eventual_output_to_loan_for_repayment function incorrectly updates
the LoanDatum after repayment by incrementing doneRecasts (field 0) instead of re-
paidInstallments (field 3). This happens because the code uses positional field up-
dates but repaidInstallments is not the first field in the LoanDatum structure anymore
— the bug was introduced when the fields’ order was updated and this function was not
thought of.

As a result, the loan appears unpaid even after successful payments, allowing lenders
to claim collateral from borrowers who might have actually repaid their installments.

Recommendation

Update the correctLoanDatum field to correctly incrementrepaidInstallments instead
of doneRecasts in the repayment validation function.

Resolution

The issue was fixed in the commit b5bcab310f .

51

FTL3-101 DEX oracle computation uses hard-
coded fees

Category Vulnerable commit Severity Status

Design Issue 0592e08738 MAJOR RESOLVED

Description

There is an option to use an oracle containing the amounts of a liquidity pool’s assets
from an AMM decentralized exchange source. To determine the price of an asset, the
constant product formula is used. This tries to count-in the impact the sell would have
on the price. Fees are set at 0.3% approximating what DEXes on Cardano currently use.
However, it is hardcoded at this value. This means that for any DEX or pool with different
fee structure s.a. those that incur project fees, as well as any non-constant product pools
such as stableswap pools, this can not be used or would yield incorrect results.

Recommendation

I suggest putting the pool fees in the Pooled subtype of the OraclePriceFeed data type.
As the feed can come from different pools from different sources, this gives the protocol
the flexibility to update the computation without upgrading the protocol. If stableswap
pools are to be supported, the stableswap formula needs to be implemented as well.

Resolution

The issue was fixed in the commit 226e399697 . The pool fee in per mille can be set in the
Pooled subtype of the OraclePriceFeed data type. No stableswap support has been
added in this commit — Ada stableswap pools s.a. OADA will use Dedicated oracle type
and stable-to-stable pools will keep being calculated via their Ada price comparison.

52

FTL3-102 Ada in expired requests is vulner-
able to double satisfaction

Category Vulnerable commit Severity Status

Logical Issue dc3f840801 MAJOR RESOLVED

Description

If the same borrower has multiple expired requests, part of his Ada can be stolen. As Ada
can be a collateral asset as well, it might be a considerable amount that is locked there.
Anybody can cancel expired requests and take a specified penalty fee in Ada out of the
request. It is checked that the rest of the request value goes to the borrower. For simplicity,
an index is provided in the redeemer and the output on that index is checked to contain
the borrower’s compensation.

It is not checked that the same output is not referenced twice in the same transaction,
though. If it is, only the bigger compensation needs to be created. The rest can be freely
taken.

Note that the requests need to be equal in the other tokens; Ada collateral requests
are the most probable victims.

Recommendation

I suggest checking that the same borrowerOutputIndex is not used multiple times.

Resolution

The issue was fixed in the commit 3bb4c59d7f by checking an output at a deterministic
index instead of using the index provided in the redeemer.

53

FTL3-103 Too big loan can liquidate the bor-
rower

Category Vulnerable commit Severity Status

Design Issue c9ad2a4960 MAJOR RESOLVED

Description

Let’s assume a borrower who creates a request and locks collateral inside. He wants to
borrow and achieve a target LTV there. He is okay with liquidations taking place if his
collateral loses value too much, it attracts more lenders.

The contracts protect the borrower in a way that no lender can lend him too little and
still lock the whole collateral. However, they do not enforce a maximum loan that a lender
can lend him.

Imagine a borrower lending too much. The borrower would still need to pay interest on
the whole amount. He might not have wanted to borrow that much. Furthermore, there’s a
bigger threat. If oracle-based liquidations are enabled and partial liquidation disabled, the
lender might have pushed the real LTV of the loan over the liquidation threshold straight
from the beginning. He might claim the whole collateral that way.

Recommendation

After implementing the minPrincipal variable semantics from the issue FTL3-306, I rec-
ommend adding a maxPrincipal value as well. That way, the borrower can choose what
the biggest loan he wants to take is; either in terms of the amount of tokens or its value
compared to the collateral he locked in.

Resolution

The issue was fixed by the commit 4b1ee3fe68 . The maxPrincipal variable was added
and enforced in the request script — note that it is represented as an exact number only,
not a dynamic LTV-based value.

54

FTL3-104 Cross-script double satisfaction

Category Vulnerable commit Severity Status

Design Issue c9ad2a4960 MAJOR RESOLVED

Description

There are multiple workflows where it is checked that a certain party is being paid a certain
amount. These cases are generally vulnerable to double satisfaction if other script inputs
are (could be) present. Those script inputs do not have to be related to this protocol at all.
It is enough that they verify that the party is being paid as well and those two validations
are not mutually exclusive. It is a mutual responsibility to try to eliminate these attack
vectors. If no protocol did this, the attacks would be real and the consequences would
not necessarily be small.

As a special case of this on just the scripts of this protocol, if the same borrower creates
a request and also is part of a dutch auction in the same asset, a payment UTxO can be
created for him that would satisfy both the dutch auction script’s payment expectations
and the request script’s principal payment expectations while paying him just the bigger
of the amounts.

Recommendation

I suggest checking that no additional script input is present in certain transactions that
expect a direct payment, such as when lending to or cancelling a request (principal pay-
ment and borrower compensation are exposed) and when interacting with a dutch auc-
tion (payments to the owner and borrower are both exposed).

Resolution

The issue was fixed by the commit 38b8354e2a . Direct payments are now checked to
contain an additional datum mentioning the output reference of the input they are coming
from making the cross-script double satisfaction attack impossible.

55

FTL3-105 Permissioned conditions not en-
forced for programmable tokens

Category Vulnerable commit Severity Status

Code Issue c9ad2a4960 MAJOR RESOLVED

Description

Requests and pools might request an additional validation of allowing only specific lenders
to lend to them or requiring a kyc’d party. Let’s focus on requests and the request spe-
cific lenders condition for simplicity, but the problem is analogous for pools and pool kyc
token additional condition.

Request UTxOs are on two possible addresses, either on a general spend script re-
ferring to the request validation or they contain programmable tokens and are on the
programmable token script hash referring the request validation in the staking credential.

The validation of the request specific lenders condition looks for all the requests on
either the general spend script (correct) or on the programmable token script referenc-
ing the request specific lender key on the staking part (wrong). Thus, it doesn’t find and
doesn’t check request inputs that are on the programmable token payment credential
with the request hash staking credential.

Recommendation

I recommend changing the following code that looks for request inputs in the request
specific lenders validator from this:

1 get_inputs_from_smart_credential(

2 self.inputs,

3 Script(requestSpendScriptHash),

4 credential,

5 smartTokensSpendScriptHash,

6)

to:

1 get_inputs_from_smart_credential(

2 self.inputs,

3 Script(requestSpendScriptHash),

56

4 requestPolicyId,

5 smartTokensSpendScriptHash,

6)

Furthermore, an analogous change is required in the pool kyc token’s validation.

Resolution

The issue was fixed in the commit 12dcddbc44 .

57

FTL3-106 Time unit change error disables re-
casts

Category Vulnerable commit Severity Status

Code Issue 4b1ee3fe68 MAJOR RESOLVED

Description

There was a recent change where the installmentPeriod was updated to be in hours
as opposed to milliseconds. This new semantics was not properly reflected in all places
it was used, though. In the get_due_installments function, the result of the function
divides timePassed in milliseconds by the installmentPeriod which is now in hours.
That results in seemingly very big number of due installments. The function is called to
determine eligibility for recasts, almost always disabling it as it looks like there are many
due installments.

Recommendation

I suggest converting theinstallmentPeriod variable to milliseconds before thetimePassed
variable is divided by the number in the get_due_installments function. I also discour-
age non-essential refactors and changes of semantics at this point.

Resolution

The issue was fixed in the commit 8d0e95f6bc .

58

FTL3-201 Minting multiple repayment tokens
is nearly unfeasible

Category Vulnerable commit Severity Status

Logical Issue c49d69ef8c MEDIUM RESOLVED

Description

The repayment minting policy supports the minting of multiple repayment tokens in a
single transaction. That is useful in a case when multiple loans’ installments are repaid in
a single transaction. However, the way the minting policy verifies that no additional tokens
are minted is near impossible to satisfy for 2+ repayment tokens.

It requires an exact match of expected and actual token mints. The actuals are all the
positive repayment token mints from the transaction’s mint value. The mint value is a dic-
tionary and this list is ordered by the asset name. It compares it with a constructed list
of the expected mints. This is constructed by taking the loan inputs, considering just a
subset of them as not all actions require a repayment token mint, hashing the input’s ref-
erence to get the token name and concatenating these records.

Let’s focus on the ordering. Minted token names are lexicographically ordered. They
need to be equal to the hashes of some loan inputs from that transaction. The inputs’
order is also lexicographically sorted by their output reference. However, their hash is
unpredictable and, more often than not, does not represent the same order. As a result,
minting multiple repayment tokens is almost always unfeasible for 3+ tokens, there’s a
50% chance for two tokens and it works fine for a single token.

Recommendation

I suggest sorting the expectedMintedNFTs before comparing them to the mintedNFTs

in the repayment minting policy.

Resolution

The issue was fixed in the commit d7d64ae28f .

59

FTL3-202 Request can not be cancelled af-
ter expiration by a different party

Category Vulnerable commit Severity Status

Logical Issue dc3f840801 MEDIUM RESOLVED

Description

Even though there is a specific workflow that allows any party to cancel an expired re-
quest, the workflow is not feasible. It is checked that the whole request value minus the
penalty fee goes to the borrower. However, it is forgotten that a request contains a request
token which is burned in that transaction. As a result, it can not be part of the borrower’s
compensation output.

Recommendation

I suggest amending the validate_collateral_less_penality_output function in a
way that does not expect the request token to be in the borrower’s output. Also, I’d suggest
correcting the typo in the function name, changing “penality” into “penalty”.

Resolution

The issue was fixed by the commit 8d0e95f6bc .

60

FTL3-203 It is possible to lend to an expired
request

Category Vulnerable commit Severity Status

Logical Issue c9ad2a4960 MEDIUM RESOLVED

Description

A borrow request has an expiration date after which anybody can cancel it and claim a
penalty fee. However, it is still possible to lend to an expired request as there is no check
checking whether or not the request expired.

Recommendation

I suggest adding a check allowing lending to only active requests.

Resolution

The issue was fixed by the commit 8d0e95f6bc .

61

FTL3-204 Pool might be blocked until recre-
ated

Category Vulnerable commit Severity Status

Code Issue c9ad2a4960 MEDIUM RESOLVED

Description

An attacker can block the liquidity inside a pool by exploiting the same vulnerability as in
FTL3-008, the hash_output_ref function’s inability to hash indices exceeding 255. He
can borrow the smallest amount from the pool and recreate the pool on too big an index
by adding dummy UTxOs in between. By doing this, nobody is able to borrow from the
pool anymore as the loan id is determined by hashing the pool input’s output reference.

The pool owner can cancel the pool and recreate it on a small index. However, espe-
cially for pools owned by companies, the recreation process might be long and imprac-
tical, and the liquidity blocked substantial. To sum up, the attacker might block a lot of
liquidity this way, even though not permanently.

Recommendation

I suggest checking that the pool is not recreated on an index that is too big. Alternatively,
you might adjust the hash_output_ref function to allow for bigger indices.

Resolution

The issue was fixed by the commit e20d6c5ddf . The hash_output_ref function was
modified to handle the case where the index is bigger than 255 properly.

62

FTL3-205 Too small Ada equity makes liqui-
dation impossible

Category Vulnerable commit Severity Status

Logical Issue c9ad2a4960 MEDIUM RESOLVED

Description

In case of partial liquidations with Ada principal, leftover Ada is sent to the borrower. How-
ever, it is checked that exactly the computed equity amount is sent to the borrower. Since
there are min Ada requirements on any UTxO, it might be impossible to create such a UTxO
in cases when the LTV is close to 1 and thus the liquidation would be unfeasible altogether.

Recommendation

I suggest checking that at least the amount is present in the equity compensation output
instead of checking exactly the amount computed.

Resolution

The issue was fixed in the commit 4fda819d4b .

63

FTL3-206 It might be impossible to add coll-
ateral to a non-specific asset collateral loan

Category Vulnerable commit Severity Status

Logical Issue c9ad2a4960 MEDIUM RESOLVED

Description

It is possible to supply a collateral using a method that values all assets under a specified
policy id as equal. Furthermore, naturally, it should be possible to add collateral to those
loans as well and the code allows that. The comparison of the value in the input and output
loan UTxOs compares Ada value strictly, meaning Ada can not be increased in the output
UTxO unless that’s the collateral asset. However, if a collateral token with the same policy
id but a new token name is added to the UTxO, the UTxO gets bigger and a bigger min
Ada is needed for the ledger to accept such a UTxO. As a result, it might not be possible
to add collateral to such loans if the min Ada in the UTxO can not cover that, s.a. in cases
when it is chosen as the minimum value that satisfies the min Ada requirements.

Recommendation

I suggest allowing Ada increases in any checks that compare values. In particular, this
finding is about the checks in thevalidate_output_to_loan_for_adding_collateral
function.

Resolution

The issue was fixed in the commit 4fda819d4b for the mentioned function.

64

FTL3-207 No liquidation discount

Category Vulnerable commit Severity Status

Design Issue c9ad2a4960 MEDIUM RESOLVED

Description

In case of partial liquidation, the lender computes the remaining debt, the current coll-
ateral value and needs to return the rest of the value to the borrower after accounting for
the remaining debt. There is no liquidation discount of any kind which would cover his ex-
change fees, potential last-minute token price changes, etc. That means that even upon
a successful partial liquidation, the lender is not guaranteed to get away with enough
tokens to cover the whole remaining debt.

Recommendation

Similar to the late repayment penalty, I suggest adding a liquidation discount parameter.
It can even be variable and set by the parties as well. The goal is to allow the lender to
claim a slightly larger portion of the pot, helping ensure they can cover the remaining debt
even in the face of market volatility and transaction costs.

Resolution

The issue was fixed by the commit 4b1ee3fe68 . A partialLiquidationPenaltyPe-

rMille variable was added. In partial liquidations, it further reduces the equity repaid
to the borrower by this portion of the remaining debt, effectively acting as a liquidation
discount.

65

FTL3-208 User stake credentials to autho-
rize programmable token transfers

Category Vulnerable commit Severity Status

Design Issue db29a2fe1d MEDIUM RESOLVED

Description

User stake credentials are used directly as “ownership credentials” for programmable to-
ken outputs in repayment and borrower compensation scenarios. The get_outputs_-

to_smart_credential function then allows outputs at the programmable script pay-
ment credential with the user staking credential. That means that for the transfers of such
tokens to be successful, the user needs to have complete control over the staking creden-
tial and the wallets building the transactions need to add the relevant signatures to the
transaction.

It is somewhat unusual to use staking credential for this use case, as payment creden-
tials are generally used to rule on spending eligibility, not the staking credentials.

Recommendation

I suggest using user payment credentials to note ownership in the programmable token
scenarios.

Resolution

The issue was fixed in the commit c23560b30f .

66

FTL3-301 Permissioned lending party is cho-
sen by an index out of context

Category Vulnerable commit Severity Status

Logical Issue 57f26cf730 MINOR RESOLVED

Description

There is an option for some loans to require an additional signing party. Any loan utilizing
this lists whitelisted parties that can approve the lending action. In the code, the actual
party which is verified to have signed the transaction is chosen from the list by an index
that means something different in the context. It represents the order of the permissioned
request input among the transaction inputs. While it is not impossible to construct a trans-
action that still validates as expected, I believe that constructing such transactions will be
troublesome for transactions with multiple authorized parties and more permissioned re-
quests in a single transaction.

Recommendation

I suggest either using different indices provided in the redeemer to determine the signing
party for each permissioned request or simply checking that any party approves it.

Resolution

The issue was fixed in the commit 226e399697 . An index from the redeemer is used
instead.

67

FTL3-302 Oracle’svalid_from is unchecked

Category Vulnerable commit Severity Status

Logical Issue 610e4c46cd MINOR RESOLVED

Description

Oracle feed contains the validity range in which it can be used. It is checked that the
validity window is not too long by maintaining:

1 commonFeedData.valid_to - commonFeedData.valid_from <= constants.

max_oracle_validity_range

It is then further checked, that the transaction’s upper bound validity timestamp is be-
fore the oracle’s valid_to timestamp.

However, the valid_from timestamp is unchecked. That means that the oracle’s va-
lidity range might be invalid and still usable. Imagine having the oracle validity range
set to (valid_from, valid_to) = (now + 1000 years, now + 10 years). Such
an artificially constructed invalid validity range would pass all the checks and such value
could be used anytime in the coming 10 years.

The assumptions on exploiting this issue are quite big, it assumes rogue oracle signa-
tories that would sign this invalid data off, hence it’s just a minor severity issue. However,
it is important to point out that the oracles could indeed publish data that could be valid
effectively forever.

Recommendation

I suggest checking that the oracle’s validity interval is not malformed and that the current
transaction’s validity interval lies within the oracle’s validity interval:

1 oracle.valid_from < tx.valid_from < tx.valid_to < oracle.valid_to

Resolution

The issue was fixed in the commit 4fda819d4b .

68

FTL3-303 Dutch auction can be bought be-
fore it starts

Category Vulnerable commit Severity Status

Code Issue 610e4c46cd MINOR RESOLVED

Description

A dutch auction features a start date. However, it is not checked that it can not be bought
before the start date. It actually just helps to calculate the current price. The collateral can
be bought even before the start date. However, with a proportionally bigger price than
the stated starting one.

Recommendation

I suggest either enforcing that the auction can not be interacted with before the start date,
giving some time for the public to notice it; or renaming the “start” variables and clarifying
that the auction is valid straight away.

Resolution

The issue was fixed in the commit c49d69ef8c . The auction can not be interacted with
before the start date.

69

FTL3-304 Indexing repayments in repayment
minting policy is troublesome

Category Vulnerable commit Severity Status

Logical Issue c49d69ef8c MINOR RESOLVED

Description

In the repayment minting policy, it is checked that only necessary repayment tokens are
minted and that they go to the correct repayment outputs. To do that, all the loan inputs
from the transaction are taken (whose order is lexicographical based on their output refer-
ence), those that do not result in a repayment output being created are skipped and those
that do are checked. However, the index that is used to index the repayment outputs is
the same one that corresponds to the loan input’s index. It does not consider those loans
that are skipped.

For example, let’s consider 3 loan inputs. The first and the third result in repayment
outputs. The second one doesn’t. When processing the third loan input, the code would
validate the third repayment output. However, there are just two of them as just two of
the loan inputs should result in repayment outputs.

While it is theoretically feasible to create a dummy second repayment output to main-
tain the logic, it is troublesome, some min Ada would be locked, and the transactions
would be unnecessary bigger.

Recommendation

I suggest first filtering out those loan inputs that should be considered for repayment token
minting and just then indexing and validating them with the repayment outputs in that
order.

Resolution

The issue was fixed in the commit 4fda819d4b . It was then reintroduced in the commit
c69a7c268b . Finally, the loan validator was split into 4 by the redeemer used, only one
redeemer for all loan inputs is now enforced and thus the issue is not present anymore at
commit db29a2fe1d .

70

FTL3-305 Burning and minting request and
pool tokens is inconvenient

Category Vulnerable commit Severity Status

Logical Issue dc3f840801 MINOR RESOLVED

Description

Similar to the issue FTL3-304, the request and pool minting policies both iterate over their
mint value records. They are sorted lexicographically by the asset names there. The code
skips burns and validates mints. However, the index is incremented even for those burned
tokens. The index is used to index request or pool outputs where the minted token should
go. That means that if there is a mint, a burn and a mint, in this order, the policy would
need three request/pool outputs to succeed. Although it is not unfeasible to create an
additional dummy request/pool, it is certainly inconvenient.

Recommendation

I suggest iterating on only the minted tokens in the request and pool minting policies,
filtering out the burning quantities beforehand.

Resolution

The issue was fixed in the commit 4fda819d4b .

71

FTL3-306 TheprincipalLTV variable is over-
used

Category Vulnerable commit Severity Status

Code Issue c9ad2a4960 MINOR RESOLVED

Description

The variable is mandatory in all request and pool datums. It is hard to say something is a
loan-to-value (LTV) when oracles are not used. In those cases, the variable even contains
a different value. Whereas a typical LTV value is less than 1, for cases when no oracles are
used, the value bears the meaning of the “amount of collateral per single principal unit” —
which should be more than 1 as loans are overcollateralized.

Even though it is strictly a semantics thing and as long as all parties are in-sync with
the meaning, there’s no impact, it sure can make mistakes easier.

Recommendation

I suggest remaking the field. The purpose of it is different in requests compared to pools.
And it is different when using oracles compared to not using them. Make the guarantees
easily readable from the structure to avoid making mistakes. For example for requests,
you could have a minPrincipal = Exactly principalAmount | Dynamic ltv.

Resolution

The issue was fixed by the commit e20d6c5ddf . The variables were renamed to min-

Principal and minCollateral. They still refer to either the LTV-style ratio based on
which the relevant minimum is computed or a multiplier that is used when oracles are not
used.

72

FTL3-307 Ada oracle use is inconsistent

Category Vulnerable commit Severity Status

Code Issue c9ad2a4960 MINOR RESOLVED

Description

All oracle feeds used in the protocol supply the price of a token to Ada. As such, Ada does
not need an oracle, its value to Ada is clear. The handling of this edge case is inconsistent
in the protocol. If Ada is the principal asset, a new logic was introduced that hardcoded
the value. If Ada is the collateral asset, though, there’s no such handling.

There might be no impact coming out of this as it’s possible to create an oracle sup-
plying the 1:1 value feed. For consistency and code cleanliness sake, it is worth unifying,
though.

Recommendation

I suggest unifying the handling and, if necessary, extracting the hardcoded logic into a
neat function so it’s not repeated across 6 places in the code.

Resolution

The issue was fixed in the commit a10fb17476 . The Ada oracle is now hardcoded in a
single place, in the retrieve_oracle_price function.

73

FTL3-308 AMM formulas are based on a ra-
tional number that is then rounded

Category Vulnerable commit Severity Status

Code Issue c9ad2a4960 MINOR RESOLVED

Description

This issue is specifically about the variables wanted_token_a_amount and selling_-

token_a_amount. They are rational numbers and their rational part is truncated inside
the AMM functions. That is not always the correct way to handle them, though. The way
they should be rounded depends on the context; is the function computing a lower bound
or an upper bound? From a purely semantic standpoint, it is also not correct — if I need
5.9 tokens, it is not enough to compute how much tokens B I need to purchase 5 tokens.

Recommendation

As the rounding depends on the use case, I suggest making the argument an integer and
thus delegating the rounding decision to the function that calls it.

Resolution

The issue was fixed by the commit 4b1ee3fe68 by the functions being removed as the
Pooled oracle data type was phased out.

74

FTL3-309 Oracle safe-guards suggestion

Category Vulnerable commit Severity Status

Design Issue c9ad2a4960 MINOR ACKNOWLEDGED

Description

Oracles either provide a fixed value determined by a CEX exchange rate, a price com-
puted by a special method via dedicated oracles or a constant product liquidity pool’s
reserves. Not all the methods might be suitable for computing the exchange rate for all
quantities, though. For example, if a small liquidity pool is used to determine the coll-
ateral’s value in lovelace, it might look as-if it is quite worthless and thus ready to be liqui-
dated. On the other side of the spectrum, using a fixed CEX exchange rate for a principal
token on a big loan might also be misleading as there might be no demand to buy at that
price that much and the price would dive significantly. It depends a lot on the tokens
used, their liquidity, the size of the loans vs the liquidity source used for oracle feeds.

The severity of this issue is set as minor as the impact depends on the actual usage of
feeds and loan sizes. Most data feeds need to be signed off by multiple parties and the
mechanism for deciding which token uses which feed is not part of this audit. This is not
to say that the results of this issue can not be catastrophical if unsuitable non-liquid feeds
are used for too big loans.

Recommendation

There’s no simple way to solve all of these issues and avoid all oracle manipulation. How-
ever, it is crucial to understand the issues behind the source of data. The oracle data
might be technically correct, but economically off. I suggest limiting the size of the loans
where certain oracle feeds can be used. This might be a separate field supplied by the
oracle providers while still part of the feed. For CEX data, it can observe the order book
depth where the price is more or less constant. For DEX feeds, it could be a more or less a
slippage free zone. For bigger loans, the user might request a dedicated oracle type that
would aggregate multiple liquidity sources or use an aggregated Charli3 oracle which
should do this as well.

Resolution

The issue was acknowledged. The client plans to use Charli3 and highly liquid assets.

75

FTL3-310 Equity computation charges con-
version fees to the lender

Category Vulnerable commit Severity Status

Logical Issue c9ad2a4960 MINOR RESOLVED

Description

If the collateral crosses the dangerous liquidation threshold in the partial liquidation sce-
nario, the remaining debt is computed and it is enforced that the remaining value from
the collateral value is returned to the borrower. In the case of sourcing the oracle data
from liquidity pools, the fees are charged to the lender. It is computed in such a way to
determine the amount of principal tokens that are needed to convert to a fixed remaining
collateral value in lovelace. That protects the borrower. However, it also means that the
lender doesn’t get the whole remaining debt out of the liquidation.

Recommendation

I suggest using a simple conversion method for equity computation in the pooled oracle
feed instead of using the token_b_received_from_selling_token_a_in_AMM_pool

function. Additionally, when rounding the equity amount, I suggest flooring it.

Resolution

The issue was fixed by the commit 8d0e95f6bc . The pooled oracle type was retired and
the value is floored now.

76

FTL3-311 Pool KYC token signature can be
reused to borrow more

Category Vulnerable commit Severity Status

Design Issue c9ad2a4960 MINOR RESOLVED

Description

The current design of the pool KYC token allows it to be reused across multiple transac-
tions. Although the signed data includes the amount from the Borrow redeemer, it does
not uniquely bind it to a single borrow action. As a result, the same user can reuse it to
authorize borrowing more than the signed-off quantity. It is unclear how important it is to
control the amount borrowed, though.

Recommendation

First, clarify whether limiting the borrowed amount is important. If it is, the signature
should be bound to the specific borrowing instance. The simplest approach would be
to include the output reference inside the signed data (noting that this may cause con-
tention). Alternatively, if limiting the amount is not a requirement, sign only the relevant
parts of the action, such as the borrower address and pool id.

Resolution

The issue was fixed by the commit 8d0e95f6bc .

77

FTL3-312 Unlimited recasts do not work

Category Vulnerable commit Severity Status

Documentation c9ad2a4960 MINOR RESOLVED

Description

The documentation on the max_possible_recasts field notes that negative number
stands for unlimited recasts. However, the is_recasting_permitted function simply
compares doneRecasts < max_possible_recasts and thus does not allow any re-
casts for a negative value of maximum recasts.

Recommendation

I suggest updating the documentation to not mention negative values and instead supply
a big integer maximum to achieve near-unlimited recasts.

Resolution

The issue was fixed in the commit a10fb17476 by updating the documentation. For
seamingly unlimited recasts, the max_possible_recasts field can be set to a big integer.

78

FTL3-313 Borrowers can avoid late repay-
ment penalty

Category Vulnerable commit Severity Status

Logical Issue c9ad2a4960 MINOR RESOLVED

Description

There is a late repayment penalty for borrowers that don’t repay in time but repay. The
transaction’s validFrom timestamp is compared with the time when the installment was
supposed to be repaid. However, the borrower has incentive to push the transaction va-
lidity from timestamp as far into the past as possible to make it look as-if he was not late.
And he can do that.

Recommendation

I suggest using the transaction validity range’s upper bound in Repay and Recast trans-
actions.

Resolution

The issue was fixed by the commit 8d0e95f6bc .

79

FTL3-314 Installment amounts might not add
up to the total principal and interest

Category Vulnerable commit Severity Status

Logical Issue c9ad2a4960 MINOR ACKNOWLEDGED

Description

Aside from considering potential late penalties, there might be off by one errors in every
installment totalling in a different sum to be repaid. The installemnts are computed and
rounded up. The last repayment is computed the same way. That might be more in total
than if there were a single repayment.

Recommendation

I think this can be handled well by an intuitive UX showing these. If you want to be precise
I suggest flooring down individual repayment amounts and computing the last repayment
as the total assumed loan plus interest minus total repaid. That might be a bit harder to
compute for the amortization formula scenario with recasts. However, it is possible with
a few additional fields.

Resolution

The issue was acknowledged.

80

FTL3-315 Total installments field for perpet-
ual loans

Category Vulnerable commit Severity Status

Code Issue c9ad2a4960 MINOR RESOLVED

Description

Every loan has a mandatory field totalInstallments. In case of perpetual loans, this
does not make any sense, though. More than that, setting the value is actually dangerous
because it is used even in perpetual loan scenarios inside the loan validator to determine
whether an ongoing loan should be created or not. As a result, setting the field incorrectly
for perpetual loan scenarios that should not have this field, might help the borrower claim
his collateral without ever repaying the principal of the loan.

Recommendation

I suggest having the field only in cases where it makes sense, not for perpetual loans.

Resolution

The danger of the issue was mitigated by the commit 4b1ee3fe68 . The totalInstall-

ments field is still present for all loans, however, it’s not used in perpetual loan scenarios.

81

FTL3-316 Hash function mismatch in oracle
key verification

Category Vulnerable commit Severity Status

Logical Issue aef2d5dd0a MINOR RESOLVED

Description

The pool KYC token validator uses blake2b_256 to hash oracle verification keys but com-
pares them against VerificationKeyHash-type values which are blake2b_224 hashes
on Cardano. This means that if real verification key hashes are put there, the comparison
will always fail since the contract is comparing 32-byte hashes against expected 28-byte
hashes. While Aiken allows 32-byte hashes to be put into the 28-byte type, it requires re-
hashing and saving the verification keys by blake2b_256 for the contract to work properly
which doesn’t look expected.

Recommendation

I suggest changing the line #115 in thepool_kyc_token.ak file fromblake2b_256(com-

pliance.token.oracle_key) to blake2b_224(compliance.token.oracle_key)

Alternatively, if the blake2b_256 usage is intentional, update the whitelisted_ora-

cles type to explicitly use Hash<Blake2b_256, VerificationKey> to make it clear.

Resolution

The issue was fixed in the commit 51be906483 .

82

FTL3-317 Native tokens can be sent to pro-
grammable credential

Category Vulnerable commit Severity Status

Logical Issue aef2d5dd0a MINOR ACKNOWLEDGED

Description

The protocol works well with both native tokens and CIP-113 programmable assets. It
handles both generically. A consequence of this, however, is that it is not checked which
tokens go to which credential. Programmable token’s spending credential ensures that
its tokens do not go to a non-programmable address.

In contrast, nothing is enforced for native tokens. They might be sent to a programmable
credential. It should be possible to retrieve them from the credential easily, by supplying a
proof that the native token is not programmable. However, it might cause inconvenience
to the user if e.g. the borrower’s native tokens are sent to the programmable token’s cre-
dential by the lender and now the borrower needs to use a specific wallet to retrieve them.

Recommendation

Consider implementing a validation that would enforce that a native token does not go to
the programmable tokens’ credential if there are no other programmable tokens added.
To do that, you might parse the programmable token’s redeemer to check whether the
tokens are programmable or not. Finally, you could also remember this data for the two
tokens used — the principal and the collateral.

Resolution

The issue was acknowledged as it is possible to retrieve the native tokens from the pro-
grammable credential.

83

FTL3-318 Big bond reference inputs can cause
DoS via transaction limits

Category Vulnerable commit Severity Status

Design Issue db29a2fe1d MINOR RESOLVED

Description

Validators require bond reference inputs for address extraction, but attackers can weaponize
these by creating bond outputs with excessive numbers of different tokens. When these
bloated bond outputs are used as reference inputs, they might cause transactions to hit
size limits, or to exceed execution units.

Impact

• Lender DoS: Malicious lenders can pack their bonds to make repayment/recast trans-
actions fail.

• Borrower DoS: Malicious borrowers can pack their bonds to make liquidation trans-
actions fail.

This can disrupt protocol operations and potentially force users into unfavorable situa-
tions.

Recommendation

Test that all affected transaction paths remain feasible even when bond reference inputs
contain the maximum number of different tokens allowed by the ledger. If it is not feasible,
different design choices might have to be taken.

Resolution

The issue was resolved by the client performing tests to show that the validators are opti-
mized enough to handle very big bond reference inputs properly.

84

FTL3-401 Dropping a byte of a hash result is
discouraged

Category Vulnerable commit Severity Status

Logical Issue dc3f840801 INFORMATIONAL RESOLVED

Description

Hash functions are heavily studied and formally proven to satisfy multiple properties. Drop-
ping a byte of the hashing result does not necessarily satisfy similar pseudo-random prop-
erties and is not generally studied that much. It is always a better idea to use a shorter but
full hash result of a studied function and append any additional data to that.

Recommendation

I suggest reworking request and pool tokens’ asset name generation to use a shorter hash
function s.a. blake2b_224 instead of shortening the sha2_256’s result.

Resolution

The issue was fixed by the commit 9e7adc4470 .

85

FTL3-402 Request id and pool id might be
identical

Category Vulnerable commit Severity Status

Logical Issue c9ad2a4960 INFORMATIONAL RESOLVED

Description

Even though a special care is taken to ensure that no multiple equal request tokens and no
multiple pool tokens can be minted, if request tokens are minted in the same transaction
as pool tokens, it might happen that the same asset names are assigned. As only the
asset name is used as a form of identifier in a loan field called originAssetName, they
might conflict there. The field is not really used in the on-chain, but it might be used in the
off-chain.

Recommendation

I suggest renaming the field to originId and prefixing the asset name by its origin, a
request or a pool, to really yield unique identifiers.

Resolution

The issue was fixed in the commit a10fb17476 by renaming the field and prefixing it by
its script origin.

86

FTL3-403 Equity payment is in the principal
asset

Category Vulnerable commit Severity Status

Design Issue c9ad2a4960 INFORMATIONAL ACKNOWLEDGED

Description

It is more common to repay the equity in the collateral asset instead of the principal asset
that this protocol repays the equity in. For example, if a borrower gets liquidated when
supplying ADA as collateral to borrow a stablecoin, his collateral is taken and the leftover
value is returned in the stablecoin. It is somewhat counterintuitive. It might make more
sense to do when assuming the possibility of NFT collaterals. However, it is applied for all
loans.

Recommendation

I suggest reconsidering the asset in which the equity is paid, potentially even making it
possible for the parties to choose whichever they prefer.

Resolution

The issue was acknowledged.

87

FTL3-404 Code quality, naming, and docu-
mentation issues

Category Vulnerable commit Severity Status

Code Style c23560b30f INFORMATIONAL RESOLVED

Description

The following code quality, naming, and documentation issues have been identified:

• Dead Code:

– address_in_signatures — Unused function that should be removed.
– is_output_delegated_to_sc — Unused function that should be removed.

• Naming Issues:

– validate_output_to_loan_for_changing_collateral— Function param-
eters loanOutput and loanValue refer to different loan UTxOs, suggesting re-
name of loanValue to oldLoanValue.

– Orcfax fluid_price field should be renamed to e.g. token_price for general
accuracy.

– Orcfax Rational datum type potentially shadows Aiken’s built-in Rational

type, suggesting renaming it to e.g. OrcfaxRational.

• Code Style:

– Orcfax feed_id validation uses starts_with prefix matching instead of exact
comparison.

– Orcfax price comparison unnecessarily reduces the prices in the code; com-
paring unreduced rationals is possible.

• Documentation:

– “Liquidation for too low LTV” comment describes the opposite scenario.
– Outdated oracle documentation: “Validate that n/m oracles have signed this tx”

no longer accurate.
– Oracle config documentation as well as implementation mentions 7-hour price

tolerance while oracle.ak mentions 6-hour tolerance.

88

Recommendation

Address these issues to improve code maintainability, reduce confusion, and ensure doc-
umentation accuracy.

Resolution

All issues were resolved by the commit c7b9d1cd2d , except for one code style issue that
is present in Orcfax-made code which the team just copied.

89

A Disclaimer
This report is subject to the terms and conditions (including without limitation, descrip-
tion of services, confidentiality, disclaimer and limitation of liability) set forth in the agree-
ment between VacuumLabs Bohemia s.r.o. (VACUUMLABS) and FT Labs GmbH (CLIENT) (the
AGREEMENT), or the scope of services, and terms and conditions provided to the Client in
connection with the Agreement, and shall be used only subject to and to the extent per-
mitted by such terms and conditions. THIS REPORT MAY NOT BE TRANSMITTED, DISCLOSED,
REFERRED TO, MODIFIED BY, OR RELIED UPON BY ANY PERSON FOR ANY PURPOSES WITHOUT VAC-
UUMLABS’S PRIOR WRITTEN CONSENT.

THIS REPORT IS NOT, NOR SHOULD BE CONSIDERED, AN ENDORSEMENT, APPROVAL OR DIS-
APPROVAL of any particular project, team, code, technology, asset or anything else. This
report is not, nor should be considered, an indication of the economics or value of any
technology, product or asset created by any team or project that contracts Vacuumlabs
to perform a smart contract assessment. THIS REPORT DOES NOT PROVIDE ANY WARRANTY
OR GUARANTEE REGARDING THE QUALITY OR NATURE OF THE TECHNOLOGY ANALYSED, nor does it
provide any indication of the technology’s proprietors, business, business model or legal
compliance.

To the fullest extent permitted by law, VACUUMLABS DISCLAIMS ALL WARRANTIES, EXPRESSED
OR IMPLIED, IN CONNECTION WITH THIS REPORT, ITS CONTENT, AND THE RELATED SERVICES AND
PRODUCTS AND YOUR USE THEREOF, including, without limitation, the implied warranties of
merchantability, fitness for a particular purpose, and non-infringement. This report is pro-
vided on an as-is, where-is, and as-available basis. Vacuumlabs does not warrant, en-
dorse, guarantee, or assume responsibility for any product or service advertised or offered
by Client or any third party through the product, any open source or third-party software,
code, libraries, materials, or information linked to, called by, referenced by or accessible
through the report, its content, and the related services, assets and products, any hyper-
linked websites, any websites or mobile applications appearing on any advertising, and
VACUUMLABS WILL NOT BE A PARTY TO OR IN ANY WAY BE RESPONSIBLE FOR MONITORING ANY
TRANSACTION BETWEEN YOU AND CLIENT AND/OR ANY THIRD-PARTY PROVIDERS OF PRODUCTS OR
SERVICES.

THIS REPORT SHOULD NOT BE USED IN ANY WAY BY ANYONE TO MAKE DECISIONS AROUND
INVESTMENT OR INVOLVEMENT WITH ANY PARTICULAR PROJECT, services or assets, especially
not to make decisions to buy or sell any assets or products. This report provides general
information and is not tailored to anyone’s specific situation, its content, access, and/or
usage thereof, including any associated services or materials, shall not be considered or

90

relied upon as any form of financial, investment, tax, legal, regulatory, or other advice.

This report is based on the scope of materials and documentation provided for a lim-
ited review at the time provided. Vacuumlabs prepared this report as an informational
exercise documenting the due diligence involved in the course of development of the
Client’s smart contract only, and THIS REPORT MAKES NO CLAIMS OR GUARANTEES CONCERN-
ING THE SMART CONTRACT’S OPERATION ON DEPLOYMENT OR POST-DEPLOYMENT. This report pro-
vides no opinion or guarantee on the security of the code, smart contracts, project, the
related assets or anything else at the time of deployment or post deployment. Smart
contracts can be invoked by anyone on the internet and as such carry substantial risk.
VACUUMLABS HAS NO DUTY TO MONITOR CLIENT’S OPERATION OF THE PROJECT AND UPDATE THE
REPORT ACCORDINGLY.

THE INFORMATION CONTAINED IN THIS REPORT MAY NOT BE COMPLETE NOR INCLUSIVE OF ALL
VULNERABILITIES. This report is not comprehensive in scope, it excludes a number of com-
ponents critical to the correct operation of this system. You agree that your access to
and/or use of, including but not limited to, any associated services, products, protocols,
platforms, content, assets, and materials will be at your sole risk. On its own, it cannot
be considered a sufficient assessment of the correctness of the code or any technology.
This report represents an extensive assessing process intending to help Client increase
the quality of their code while reducing the high level of risk presented by cryptographic
tokens and blockchain technology, however blockchain technology and cryptographic
assets present a high level of ongoing risk, including but not limited to unknown risks and
flaws.

While Vacuumlabs has conducted an analysis to the best of its ability, it is Vacuum-
labs’s recommendation to commission several independent audits, a public bug bounty
program, as well as continuous security auditing and monitoring and/or other auditing
and monitoring in line with the industry best practice. The possibility of human error in
the manual review process is highly real, and Vacuumlabs recommends seeking multiple
independent opinions on any claims which impact any functioning of the code, project,
smart contracts, systems, technology or involvement of any funds or assets. VACUUMLABS’S
POSITION IS THAT EACH COMPANY AND INDIVIDUAL ARE RESPONSIBLE FOR THEIR OWN DUE DILI-
GENCE AND CONTINUOUS SECURITY.

91

B Audited files
The files and their hashes reflect the final state at commit
aed7d340119c56e8f8f02cbefcc53810ce7df0fc after all the fixes have been imple-
mented.

97605...83634 lib/fluidtokens/authorizer.ak

9f9d5...34bc2 lib/fluidtokens/constants.ak

e4942...02447 lib/fluidtokens/finance.ak

e1368...7468c lib/fluidtokens/oracle.ak

b5dd0...e2a39 lib/fluidtokens/types/config.ak

952b9...423c7 lib/fluidtokens/types/dutch_auction.ak

5f6ba...d25c3 lib/fluidtokens/types/general.ak

2487b...ba35d lib/fluidtokens/types/loan.ak

d99ae...77a8d lib/fluidtokens/types/oracle.ak

13e9d...7d645 lib/fluidtokens/types/pool.ak

db580...e5a1b lib/fluidtokens/types/repayment.ak

0df35...f6907 lib/fluidtokens/types/request.ak

16929...cab58 lib/fluidtokens/utils.ak

SHA256 hash Filename

Continued on next page

92

3aed1...e438a lib/smart-tokens/utils.ak

a0f53...2dfb3 validators/bond.ak

37a65...86b00 validators/conditions/pool_kyc_token.ak

17857...2ec42 validators/conditions/request_specific_lenders.ak

29548...3bcbf validators/config.ak

eed40...a239b validators/dutch_auction.ak

bd519...a564d validators/general_spend.ak

74f21...fb2dc validators/lender_smart_wallet.ak

9d815...f66e0 validators/loan_change_collateral_action.ak

d65be...57620 validators/loan_claim_action.ak

07278...fc2bc validators/loan_recast_action.ak

0fb6d...e6c4c validators/loan_repay_action.ak

d2c38...4f94d validators/loan.ak

423d9...5d7e6 validators/oracle.ak

1e888...fbf38 validators/pool.ak

6b9ac...8de80 validators/repayment.ak

236c1...94a72 validators/request.ak

SHA256 hash Filename

93

Please note that I did not audit Aiken itself, the underlying CIP-113 programmable to-
ken implementation or the external oracles that are used; they were assumed to function
correctly and as designed.

94

C Methodology
Vacuumlabs’ agile methodology for performing security audits consists of several key
phases:

1. Design reviews form the initial stage of our audits. The goal of the design review is
to find larger issues which result in large changes to the code fast.

2. During the deep code audit, we verify the correctness of the given code and scruti-
nize it for potential vulnerabilities. We also verify the client’s fixes for all discovered
vulnerabilities. We provide our clients with status reports on a continuous basis pro-
viding them a clear up-to-date status of all the issues found so far.

3. We conclude the audit by handing over a final audit report which contains descrip-
tions and resolutions for all the identified vulnerabilities.

Throughout our entire audit process, we report issues as soon as they are found and
verified. We communicate with the client for the duration of the whole audit. During our
audits, we check several key properties of the code:

• Vulnerabilities in the code

• Adherence of the code to the documented business logic

• Potential issues in the design that are not vulnerabilities

• Code quality

95

During our manual audits, we focus on several types of attacks, including but not lim-
ited to:

1. Double satisfaction

2. Theft of funds

3. Violation of business requirements

4. Token uniqueness attacks

5. Faking timestamps

6. Locking funds indefinitely

7. Denial of service

8. Unauthorized minting

9. Loss of staking rewards

96

D Issue classification
Severity levels
The following table explains the different severities.

Severity Impact

CRITICAL Theft of user funds, permanent freezing of funds, protocol insolvency, etc.

MAJOR
Theft of unclaimed yield, permanent freezing of unclaimed yield, temporary
freezing of funds, etc.

MEDIUM Smart contract unable to operate, partial theft of funds/yield, etc.

MINOR Contract fails to deliver promised returns, but does not lose user funds.

INFORMATIONAL Best practices, code style, readability, documentation, etc.

Resolution status
The following table explains the different resolution statuses.

Resolution status Description

RESOLVED Fix applied.

PARTIALLY
RESOLVED

Fix applied partially.

ACKNOWLEDGED Acknowledged by the project to be fixed later or out of scope.

PENDING Still waiting for a fix or an official response.

97

Categories of issues
The following table explains the different categories of issues.

Category Description

Design Issue
High-level issues in the design. Often large in scope, requiring changes to the
design or massive code changes to fix.

Logical Issue
Medium-sized issues, often in between the design and the implementation. The
changes required in the design should be small-scaled (e.g. clarifying details),
but they can affect the code significantly.

Code Issue
Small in size, fixable solely through the implementation. This category covers all
sorts of bugs, deviations from specification, etc.

Code Style
Parts of the code that work properly but are possible sources of later issues (e.g.
inconsistent naming, dead code).

Documentation
Small issues that relate to any part of the documentation (design specification,
code documentation, or other audited documents). This category does not
cover faulty design.

Optimization Ideas on how to increase performance or decrease costs.

98

E Report revisions
This appendix contains the changelog of this report. Please note that the versions of the
reports used here do not correspond with the audited application versions.

v1.0: Main audit
Revision date: 2025-08-27
Final commit: aed7d340119c56e8f8f02cbefcc53810ce7df0fc

We conducted the audit of the main application. To see the files audited, see Audited
files.

Full report for this revision can be found at url.

99

https://github.com/vacuumlabs/audits/blob/master/reports/fluidtokens-lending-v3-v1.0.pdf

F About us

Vacuumlabs has been building crypto projects since the early days.

• We helped create WingRiders, currently the second largest decentralized exchange
on Cardano (based on TVL).

• We are behind the popular AdaLite wallet. It was later improved into a multichain
wallet NuFi.

• We built the Cardano applications for the hardware wallets Ledger and Trezor.

• We built the first version of the cutting-edge decentralized NFT marketplace Jam On
Bread on Cardano with truly unique features and superior speed of both the interface
and transactions.

Our auditing team is chosen from the best.

• Talent from esteemed Cardano projects: WingRiders and NuFi.

• Rich experience across Google, traditional finance, trading and ethical hacking.

• Award-winning programmers from ACM ICPC, TopCoder and International Olympiad
in Informatics.

• Driven by passion for program correctness, security, game theory and the blockchain
technology.

Note: Vacuumlabs Auditing continues as Invariant0. See more here.

100

https://invariant0.com

Contact us:
info@invariant0.com

	Revision table
	Executive summary
	Project overview
	Audit overview
	Summary of findings

	Severity overview
	FTL3-001 Repayments can not be withdrawn
	FTL3-002 Lender pool funds can be stolen
	FTL3-003 Collateral can not be withdrawn
	FTL3-004 Lender can claim the whole collateral in a dutch auction before start
	FTL3-005 Lender can claim the whole collateral in an auction by malicious address
	FTL3-006 Blocking funds and gaining unfair advantage by adding a programmable token
	FTL3-007 Ada collateral is not protected in requests
	FTL3-008 Lender can disable repaying and liquidate
	FTL3-009 Loan token can not be minted for programmable token loans
	FTL3-010 Repayment token can not be minted for programmable token loans
	FTL3-011 Protocol is unfeasible due to usage of get_outputs_to_smart_credential
	FTL3-012 Dutch auction's borrower compensation goes to the lender
	FTL3-013 AMM formulas are incorrect
	FTL3-014 Wrong arguments in conversion from Ada to token
	FTL3-015 Healthy loans can be liquidated
	FTL3-016 Amortization formula is wrong
	FTL3-017 Recasting does not work well with the amortization formula
	FTL3-018 Recasting on due loan installments avoids interest and penalties
	FTL3-019 Inconsistent perpetual loan interest computation
	FTL3-020 Remaining debt on perpetual loans does not assume previous payments
	FTL3-021 Dutch auction payments can break due to checking bond addresses
	FTL3-022 Perpetual loan recasting logic is incorrect
	FTL3-023 Loan inputs with programmable assets bypass action validator checks
	FTL3-024 Wrong action credential allows borrowers to unlock programmable collateral
	FTL3-025 Wrong receipt condition allows blocking funds with programmable assets
	FTL3-026 Programmable collateral sent to uncontrollable auction credential is lost
	FTL3-027 Zero liquidation penalty incorrectly skips equity return to borrower
	FTL3-028 Malicious parties can block transactions by holding bonds without stake credentials
	FTL3-029 Bond address trusted without bond presence verification
	FTL3-030 Datums can not be parsed
	FTL3-031 Wrong config index extracts incorrect loan policy id
	FTL3-032 LTV is calculated based on the initial principal
	FTL3-033 Repayment increments wrong field causing eventual collateral loss
	FTL3-101 DEX oracle computation uses hardcoded fees
	FTL3-102 Ada in expired requests is vulnerable to double satisfaction
	FTL3-103 Too big loan can liquidate the borrower
	FTL3-104 Cross-script double satisfaction
	FTL3-105 Permissioned conditions not enforced for programmable tokens
	FTL3-106 Time unit change error disables recasts
	FTL3-201 Minting multiple repayment tokens is nearly unfeasible
	FTL3-202 Request can not be cancelled after expiration by a different party
	FTL3-203 It is possible to lend to an expired request
	FTL3-204 Pool might be blocked until recreated
	FTL3-205 Too small Ada equity makes liquidation impossible
	FTL3-206 It might be impossible to add collateral to a non-specific asset collateral loan
	FTL3-207 No liquidation discount
	FTL3-208 User stake credentials to authorize programmable token transfers
	FTL3-301 Permissioned lending party is chosen by an index out of context
	FTL3-302 Oracle's valid_from is unchecked
	FTL3-303 Dutch auction can be bought before it starts
	FTL3-304 Indexing repayments in repayment minting policy is troublesome
	FTL3-305 Burning and minting request and pool tokens is inconvenient
	FTL3-306 The principalLTV variable is overused
	FTL3-307 Ada oracle use is inconsistent
	FTL3-308 AMM formulas are based on a rational number that is then rounded
	FTL3-309 Oracle safe-guards suggestion
	FTL3-310 Equity computation charges conversion fees to the lender
	FTL3-311 Pool KYC token signature can be reused to borrow more
	FTL3-312 Unlimited recasts do not work
	FTL3-313 Borrowers can avoid late repayment penalty
	FTL3-314 Installment amounts might not add up to the total principal and interest
	FTL3-315 Total installments field for perpetual loans
	FTL3-316 Hash function mismatch in oracle key verification
	FTL3-317 Native tokens can be sent to programmable credential
	FTL3-318 Big bond reference inputs can cause DoS via transaction limits
	FTL3-401 Dropping a byte of a hash result is discouraged
	FTL3-402 Request id and pool id might be identical
	FTL3-403 Equity payment is in the principal asset
	FTL3-404 Code quality, naming, and documentation issues

	Appendix
	Disclaimer
	Audited files
	Methodology
	Issue classification
	Report revisions
	About us

